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Abstract

There are no widely accepted design patterns for writ-

ing distributed, concurrent, fault-tolerant code. Each pro-

grammer develops her own techniques for writing this

type of complex software. The use of a common pattern

for fault-tolerant programming has the potential to pro-

duce correct code more quickly and increase shared un-

derstanding between developers.

We describe rules, tasks, and pools, patterns extracted

from the development of a fault-tolerant datacenter stor-

age system. We illustrate their application and discuss

their relationship to concurrent programming models. Our

goal is to generate discussion that will ultimately lead to

common techniques for fault-tolerant programming.

1 Introduction

As datacenters and large-scale applications have become

prevalent, more programmers are developing code mod-

ules that must be distributed, concurrent, and fault-

tolerant (DCFT). These systems must manage hundreds or

thousands of machines while retaining correctness, con-

sistency, and availability in the face of frequent and unpre-

dictable failures. This type of programming is notoriously

difficult to get right [2]. Failures can occur at the most in-

opportune times; they may even occur in the middle of

handling other failures.

In developing RAMCloud [8], we struggled to express

DCFT code in several subsystems, such as

• replicating a distributed log and restoring durability

when replicas are lost due to server failures;

• coordinating the recovery of the contents of the

DRAM of a failed server;

• disseminating cluster membership information in a

consistent way to failure-prone servers;

• collecting recovery data from distributed logs, de-

tecting inconsistencies, and replaying data;

• and reclaiming distributed storage and resources.

There are no widely accepted design patterns for imple-

menting DCFT systems. Each programmer develops his

own set of ad hoc implementation techniques.

Traditional “threaded programming [1]” does not work

for these types of systems. In a large scale system, the

state of the cluster is constantly changing. Programs must

react to failures quickly, and, as a result, control flow in

fault-tolerant modules must be able to adapt radically to

unpredictable events. The serial programming style of

threaded code presumes a sequence of steps in achieving

a goal, but faults break that assumption.

Our hope is that our reflections on developing RAM-

Cloud will generate discussion and lead to common

techniques for developing distributed, concurrent, fault-

tolerant systems. A common, formulaic approach would

allow developers to produce software quickly and cor-

rectly and would benefit from a shared understanding be-

tween developers.

As independent developers have implemented RAM-

Cloud subsystems, a pattern has emerged. Fault-tolerant

code, by nature, must be composed of short blocks that

may have a desired order, but that can be quickly redi-

rected based on outside events. Consequently, these mod-

ules are structured as a set of conditional rules iteratively

applied to state. Conceptually, rules specify small steps in

achieving some goal or attaining some invariant. At each

iteration, rules are selected for execution based solely on

state and not on any static or anticipated ordering. Rules-

based code can react to outside events easily by changing

state to influence future actions.

Rules are a basic construct; the challenge is in deter-

mining the best way to structure programs comprised of

hundreds of rules on thousands of objects. We group inde-

pendent sets of rules into tasks which provide modularity.

Tasks are organized into pools to simplify synchronization

and make the application of rules efficient.

In extracting a simple pattern for distributed, concur-

rent, fault-tolerant code from our experiences, the “pro-

ductive ignorance” of the monitor pattern has served

as our inspiration. Using a simple structure, moni-

tors [5, 7] eliminate programmer decisions about concur-

rency, which produces correct code faster. When writing

a monitor, a programmer need only decide which meth-

ods should be synchronized. Details about which fields

should be protected by a mutex, how fine-grained mutexes

should be, and what locking patterns to use are all pre-

scribed. We believe a similarly prescriptive approach to
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Figure 1: Servers execute client write requests by appending ob-

ject data to an in-memory log. Log data is replicated and scat-

tered across the cluster in units of segments. When a server fails

(upper left), some replicas are lost. The log module overlaps

recreation of lost replicas with normal replication RPCs (lower

left).

DCFT programming will result in better code and higher

developer productivity.

We illustrate rules, tasks, and pools through an example

taken from RAMCloud’s data replication module, discuss

the trade-offs of our approach, and discuss its relationship

to existing concurrent programming models.

2 Log Replication in RAMCloud

RAMCloud is a fault-tolerant datacenter storage system

that runs on clusters of thousands of machines. During

normal operation, each RAMCloud server stores objects

by appending them to a log that is replicated across other

servers in the cluster (Figure 1). Each server’s log is di-

vided into fixed-size segments. Each segment is replicated

on a different set of servers. When a server fails, some

segment replicas are lost. The log manager on each server

reacts to server failure messages from the cluster coordi-

nator and creates new replicas for segments that were af-

fected by a server failure. The log manager typifies many

subsystems in RAMCloud.

• It is highly distributed. Each server’s log is com-

prised of tens of thousands of segment replicas scat-

tered across thousands of machines. Whenever any

server fails all servers’ logs are affected.

• It is highly concurrent for performance. Client ob-

served end-to-end latency for a triplicated 100 byte

write operation in RAMCloud is 15 µs. Replication

RPCs must be overlapped to synchronously replicate

data with the lowest possible latency. Additionally,

on server failure, lost replicas must be recreated else-

where in the cluster in parallel with normal operation

and with each other. Recreating replicas uses the full

output bandwidth of our machines: 25 Gbps.

• It must be fault-tolerant. Server failures can occur

at any time and can make ongoing replication op-

erations impossible or unsafe to complete. The log

manager must quickly handle failures that affect seg-

ments that are fully replicated, under active replica-

tion, or already under repair due to prior failures.

Under these requirements, traditional serial program-

ming with threads is difficult because handling server fail-

ure notifications requires unpredictable changes to execu-

tion order. For example, when a server failure notification

is received by a server, many of its segments are affected,

and each effected segment replica can be in a different

state. Some replicas may have an RPC outstanding to the

failed server and must abort the RPC and restart replica-

tion elsewhere instead of expecting a response. Other af-

fected replicas may not be consistent with their counter-

parts; such replicas require contacting the cluster coordi-

nator before recreating the replica in order to prevent in-

consistencies. If each replica of each segment were man-

aged by a separate thread they would have to be inter-

rupted to abort and redirect operations. In general, faults

require the flow of execution to change in radical and un-

predictable ways.

3 Rules, Tasks, and Pools

When we started the RAMCloud project we had no par-

ticular strategy for implementing DCFT code. We also

had no idea how many different subsystems would re-

quire DCFT code. Over time, several different developers

implemented DCFT modules independently. Although

the implementations were different in many respects, we

eventually noticed a common theme: each of the DCFT

modules contained a set of rules that could trigger in any

order. We gradually developed a pattern for DCFT code

based on three layers: rules, tasks, and pools. This pat-

tern has worked for a variety of DCFT problems in RAM-

Cloud. We believe that this pattern, or something like

it, might provide a convenient way of structuring DCFT

modules in general.

A rule describes an action to be taken when a con-

dition is met. An action is a block of code. A condi-

tion is predicate on state variables. Rules-based code has

two interesting properties. First, actions are small and

non-blocking so that control flow within an action is pre-

dictable; faults need not affect the course of an execut-

ing action. Typical actions start operations such as asyn-

chronous RPCs, check for the completion of operations,

and update state. Second, the execution order of rules is

unpredictable; changes to the state determine the order in
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Segment Replication Task

Rule Condition Action

R1 No backup server selected. Choose an available server on which to create replica.

R2 Header not committed, no RPC outstanding. Start RPC containing the header.

R3 Header not committed, RPC completed. Mark header committed; mark prior segment to allow footer replication.

R4 Uncommitted data, no RPC outstanding, prior footer is committed. Start write RPC containing up to 1 MB of uncommitted data.

R5 Uncommitted data, RPC completed. Mark sent data as committed.

R6 Segment finalized, following header committed,

footer not sent, no RPC outstanding.

Start RPC containing the footer.

R7 Segment finalized, RPC completed. Mark footer as committed; mark following segment to allow data replication.

Server Failure Task
Rule Condition Action

F1 True For all replicas using the failed server: deselect server; reset replica header, footer, and data to unsent and uncommitted.

Figure 2: Rules for managing one replica of a particular log segment. Server failures are handled with the same rules as normal

operation. Not all rules are isolated to using the state for a single segment; some rules test (R4 and R6) or modify (R3 and R7) state

from multiple segments.

which rules execute. As a result, execution adapts auto-

matically in the face of concurrency and faults. Major

changes in control flow happen between rules, not within

an action.

Figure 2 shows the log manager’s rules for creating seg-

ment replicas. As an example, rule R4 specifies the fol-

lowing predicate on a segment replica:

• some data appended to the segment has not been

committed on the server storing the replica, and

• no replication RPC is outstanding to the server, and

• the preceding segment in the log has already com-

mitted its footer.

If this condition is met, then the log manager starts a repli-

cation RPC with the newly appended data to the server

storing the replica. If the RPC completes successfully

without intervening server failures, then rule R5 will even-

tually execute. If the target server fails, then replication

will be redirected by rule F1 (bottom of Figure 2). When

F1 is executed, it iterates over the full list of segments in

the log. The rule resets the replication state for any replica

stored on or in the process of being replicated to the failed

server. Any RPCs outstanding to the failed server are can-

celled. After the state is reset, recreation of the replica

happens automatically, just as it does during normal oper-

ation restarting with rule R1.

Rules address the unpredictability of fault handling, but

a full system may consist of many rules and state records;

how rules are organized and applied affects the complex-

ity and efficiency of the resulting code. In RAMCloud,

we group rules using a structure we call a task. A task

has three elements: a state record, a set of rules, and a

goal. Tasks are represented as instances of a class that

uses its fields as the state record. For example, for log

replication each segment is represented as a task whose

fields describe which server each replica is stored on and

how much data has been sent and acknowledged for each

replica. Rules for a task are specified statically as a set

of nested “if/else” statements in a single method. Its rules

are applied to its state by invoking the method. Finally,

each task has a goal that its rules are intended to achieve.

A segment replication task meets its goal when it creates

three complete replicas of the segment.

Finally, we use a third layer we call a pool to group the

tasks for a subsystem. Pools provide isolation between

subsystems by partitioning tasks into independent sets and

allow tasks from different pools to execute concurrently.

For example, all of the segment replication tasks reside in

a single pool in the log manager. Tasks for other subsys-

tems like server recovery reside in separate pools and are

run in parallel with log replication tasks.

Pools reduce the overhead of rule application by divid-

ing tasks into two groups: active tasks, whose rules have

to be evaluated, and inactive tasks, which can be skipped

without evaluating their rules. A task remains active until

it achieves its goal, at which point it becomes inactive. For

typical subsystems, only a small subset of tasks are active

at any one time, so testing rules is efficient. For example,

segments are usually only active for a short period when

they are first added to the log, while they are transmitting

new data for replication. Most segments are fully repli-

cated and are ignored by the log manager pool. Failures

can return a task to a state where its goal is no longer met,

at which point it is reactivated.

In RAMCloud, each task pool has a single thread that

cycles through the active tasks, executing their rules. Be-

cause rule execution is serialized, no synchronization is

needed when testing rules or executing actions; rules from

one task can safely test and modify the state from other

tasks in the same pool. For example, rule R6 prevents a

segment from replicating its footer before the segment that

follows it in the log has replicated its header; its condition

tests the replication state of the following segment with-

out any synchronization. Similarly, the action from rule

R7 modifies state in the following segment task to allow

it to start replication after a footer is committed.

High concurrency is achieved in RAMCloud by
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overlapping long-running operations using asynchronous

RPCs and IO. Tasks are well-suited to managing this type

of concurrency by using actions to start operations and

conditions to poll for their completion. Using multi-

ple threads for performance provides little benefit since

servers do not perform long running computations that

could be run in parallel.

4 Discussion

As with monitors, one of the primary benefits of rules,

tasks, and pools is that they free the developer from mak-

ing complex decisions about how to organize code. In

developing a rules-based software module a programmer

iteratively applies a simple line of thinking.

1. Determine a circumstance under which steps must be

taken to meet a goal. Define a condition for it.

2. Create an action that makes progress toward that

goal. Subdivide actions that block. Try to imple-

ment actions that require the fewest additional rules.

Wherever possible actions should leave the state such

that existing rules will apply to it.

3. After creating the action, if the action does not leave

the task in the goal state, then add it to the set of

active tasks in its pool.

Rules have two key benefits that simplify writing fault-

tolerant code.

• Outside events and exceptions can redirect execution

to account for new information by modifying state.

Typically, exceptional cases are handled by reverting

state to the condition of a rule that is logically an

“earlier” step.

• Rules are selected only based on explicit state rather

than a prespecified order. The programmer only

needs to reason about states when creating rules and

is freed from worrying about the history of computa-

tion that led to the state.

Tasks provide a structure that

• modularizes rules and state into relatively indepen-

dent sets and eases reasoning about their interac-

tions;

• is well suited to managing IO and RPC concurrency;

• is inexpensive and requires no per-task kernel-state;

• and relieves the programmers from making mundane

structuring decisions.

Finally, pools organize tasks

• to make rules efficient by allowing tasks to be ig-

nored that do not need immediate work;

• and to ease synchronization complexity by serializ-

ing the application of rules within a subsystem.

4.1 Issues

Programming with rules decomposes a problem and eases

implementation of individual steps, but managing and de-

bugging hundreds of rules across thousands of instances

of tasks can be challenging.

First, tracing execution history and causality can be

difficult when programming with rules. The static code

structure of a set of rules in the programmer’s editor typi-

cally provides little information about the order in which

rules get applied. Furthermore, there is no runtime stack

to produce a trace of calls when debugging anomalous be-

havior. In practice, we have found aggressive logging of

the state of tasks and the actions performed makes debug-

ging tractable. This problem is fundamental to any solu-

tion for DCFT code because execution order in is unpre-

dictable.

A second complication with tasks are actions that leave

a task in a non-goal state but fail to add it to the active task

list for its pool. This leads to stalls in work which can be

difficult to detect. In our code, it has been helpful to dump

the state of a task along with a warning message if a task

is taking an unexpectedly long time to reach some goal

state.

Similarly, a developer must ensure that all possible

states that a task can get into are covered by the rules for

the task. To trivially ensure all states are covered by a set

of rules, for every clause in the condition we also include

the “else” case for that condition. Unexpected states are

marked with an error message. Statically enumerating all

possible cases by construction has been adequate for us

to avoid problems. We have only encountered unexpected

states a few times, and they were always caught quickly

using our error messages.

Finally, outside threads that want to extract informa-

tion from tasks require synchronization. Though this is a

problem in general rather than a problem with rules and

tasks, our tasks mechanism does not provide a built-in so-

lution. In RAMCloud, different modules extract informa-

tion from a set of tasks in various ways depending on the

performance sensitivity of the outside code. One general

approach is to create a special task that, when invoked,

makes a copy of the requested state and notifies a condi-

tion variable to inform the outside code of its presence.

Despite these issues, this rules-based approach has al-

ready proven useful in our own development, and it exem-

plifies the type of pattern programmers need to develop

fault-tolerant applications quickly and correctly.
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5 Related Work

Rules are not new; others have arrived at rules-based

code in writing fault-tolerant systems. Breaking code into

small conditionally-applied non-blocking blocks is funda-

mental to systems where control flow must adapt to unpre-

dictable events. For example, TCP implementations are

programmed as a set of per-connection state machines that

react to timers and incoming and outgoing data. These

events transform connection state and actions are trig-

gered based on the resulting state. Our goal is to extract a

general pattern for implementing these types of systems.

Make [4] is a utility that builds software based on user

provided rules. Make rules are similar to the rules we

present; they specify small steps in transforming source

files between various intermediate forms and describe

how to combine them to produce a final product.

Others have struggled with the difficulty of expressing

fault-tolerant systems as well. For example, Chandra et

al. [2] express a Paxos-based replication algorithm as a

pair of state machines in a custom-made specification lan-

guage to increase understandability . A task can be seen

as a form of state machine with rules driving state tran-

sitions. We have found rules for our most complex tasks

can be expressed in a few hundred lines of C++; a task

is compact enough for a developer to thoroughly reason

about its rules.

Prior discussion on structuring concurrent servers has

focused on performance rather than fault-tolerance. The

two most prevalent models are threads [9, 10], and

events [11, 3, 12, 6]; however, while fault handling has

a substantial impact on how code and concurrency are or-

ganized, neither approach on its own addresses the com-

plexity of fault handling in a distributed system.

5.1 Threads

Threads work well for managing concurrency in a fault-

free environment, but outside faults require synchroniza-

tion to redirect the execution of threads. Standard kernel

threads are too expensive to support the tens or hundreds

of thousands of contexts that would be natural for highly

concurrent systems. Threads have been useful in in RAM-

Cloud, but not for managing pervasively concurrent and

fault tolerant code; we are eager to learn of others’ expe-

riences using threads in building fault-tolerant systems.

5.2 Event-based Programming

Programming with rules, tasks, and pools is similar in

some ways to event-based programming [11, 3, 12, 6].

Both manage concurrency with asynchronous operations,

and both serialize the execution of code to simplify syn-

chronization. RAMCloud’s RPC system uses an event-

based model internally to manage asynchrony; however,

these events are never exposed to higher-level code.

However, there is a key difference between events and

rules; rules select actions for execution based solely on

state, whereas events select handlers in response to occur-

rences, such as the completion of an RPC or a fault. As

a result, with rules-based code, an event is handled only

by modifying state, and rules that monitor the state are

triggered indirectly when it changes. Rules use a “pull”

model for reacting to events; event handlers remain de-

coupled from the actions which respond to the event. This

improves modularity since the rules remain part of the

tasks that react to the event. For example, adding a new

task that reacts to an event requires no modification to the

event handler. Event-based programming encourages a

“push” model for reacting to events. An event handler

must trigger all of the actions are needed to respond to the

event, so the details of how independent subsystems react

to the event leak together.

By incorporating a simple form of events, a task could

be inactivated while waiting on long-running operations

for efficiency. Upon operation completion, the task would

be reactivated; however, could be prematurely activated

due to failures. This is similar to how notifications on

condition variable are regarded as hints with monitors [7].

Since rules make no assumptions about execution order,

no change would be needed in programming semantics.

So far such a mechanism has been unnecessary.

6 Conclusion

We have described rules, tasks, and pools as a pattern for

writing distributed, concurrent, fault-tolerant code. Rules-

based code easily adapts to handle cluster-wide events like

server faults. Tasks and pools organize rules for modular-

ity, efficiency, and easy synchronization. We believe using

some form of rules-based code is unavoidable in writing

fault-tolerant systems, though investigating other patterns

for organizing rules would be valuable.

These patterns have already been a benefit to our own

project, and we plan to continue to hone them as we de-

velop new software systems. Hopefully, as we gain expe-

rience, we will find other useful ways to organize this type

of complex code. We plan to explore and compare the pat-

terns of other fault-tolerant systems to our own, and we

encourage others to publish and relay their experiences in

developing similar large-scale systems. Our hope is that

widely accepted design patterns for writing distributed,

concurrent, fault-tolerant code will emerge and simplify

the development of large-scale systems.
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