ATOM Server Configuration

rev2.06
 10 April 2014

Satoshi Matsushita

Photograph of ATOM Chassis

Standard 19 inch and 2U.

- Each chassis have 46 slots for server blades.
- At 25 degree C, 44 ATOM blades are maximum
- At 40 degree C, 41 ATOM blades are maximum

ATOM Server Blade

Server Module

Block Layout

【SPECIFICATIONS】

- 1x CPU(Atom ${ }^{\mathrm{TM}} \mathrm{C} 27 \mathrm{xx}$)
- 4x SO-DIMM (Max 32GB)
$-1 \times \mathrm{mSATA}$ SSD (128GB)
- 1x BMC
- 1x SATA3 (To mSATA SSD)
- $2 x$ SATA2 (To storage board)
- 2×2.5 Gbit LAN

Processor	Cores	Frequency	Power
C 2750	$8 \mathrm{C} / 8 \mathrm{~T}$	2.4 GHz	20 W
C 2730	$8 \mathrm{C} / 8 \mathrm{~T}$	1.7 GHz	12 W

Connection in a Chassis

1. Chassis come with:
2. $4 \times 3 \mathrm{~m} 40 \mathrm{G}-40 \mathrm{G}$ fibers with server side QSFP+ 40GBase-SR4 multi-mode optical fiber using MP0 connecter.
3. $4 \times 3 \mathrm{~m} 40 \mathrm{G}-10 \mathrm{G}$ split fibers with server side QSFP+ Multimode optical fiber.
4. two IEC C-13 cables for 200 V AC power.
5. slide rails for mount

Switch Board

Information herein is preliminary and subject to change.
S. Matsushita, 04/10/2014, rev. 2.06

Machine Specification

- Three Chassis are arriving on mid April 2014.
- Total: 6U, 150kg
- 200V 6kW power (2 redundant C-13 socket @chassis)
- $\quad 4.8 \mathrm{~kW}$ maximum at normal operation
- less than $1 / 3$ with CPU idle
- Can turn off each server blade and observe chassis temperature with IPMItool.

Server Chassis

	Chassis
Chassis Dimension (Width \mathbf{x} Depth \mathbf{x} Height)	2 U Chassis Width: 19Inch Depth: 800 mm
Weight	Up to 47 kg (system)
Power	Two AC 200V 1.6kw power supply IEC C-14 connector Power consumption: Up to 1.9 kw per chassis
Temperature	10 degree C ~ 40 degree C (Ambient air temp.)

IEC-C13 Rack Mount Power Rail

- Redundancy with each rail to independent wall socket
- Need to identity plug type to floor socket

IEC C13 Rack Mount Mains PDU Powe...
wwwetcout-1000-1000-Excer

XIEC C13 scotate mCC .

2のエatcer

Summary of Server Setup

1. Locate a new rack next to existing three racks with Super micro servers and connected to the existing server though 1G ethernet.
2. The new rack consists of:
3. 1 Gbps $\times 20$ port (minimum) LAN switch :
4. 6 ports from ATOM server
5. 10 ports for existing Super Micro system experiment
6. 1 for host machine (rcmaster)
7. Power rails: Two independent 200V-3kW C14 power rails
8. $6 \times \mathrm{C} 13$ power cables are prepared.
9. Slide rails for three chassis...
10. 40 G optical fibers are provided with the servers
11. Only QSFP+s for server side are provided

- 40GBase-SR4 multi-mode optical fiber using MP0 connecter
- The MP0 has 12 cores but SR4 uses only 8 cores.

Existing Cluster

Three 19 inch APC Racks: http://www.apc.com/products/family/index.cfm?id=430 Upper 13U open Rack with rcmaster: upper 17U open

Rack with Infiniband and10G switch

Need 7U for the new NEC Cluster

Network

Connection in Existing Cluster

1. rcmaster is host/firewall/DHCP/tftp/IMPI server
2. 10G network exists: a 2 port 10G NIC is installed in host servers.

Cf: https://ramcloud.stanford.edu/wiki/display/ramcloud/Cluster+Intro

Chassis Switches and Two Domains

- Two FM5225 switch boards are installed in a chassis
- Each board consists a separate network domain, i.e.. a packet sent to NIC1 is always delivered to other ATOM server's NIC1 thorough Network1. No exchange path between Network 1 and Network 2.

Limitation to create network with chassis switch.

- No spanning tree
- No loop arrowed
(openflow may fix the issue)

Direct Connection btwn Switch Boards

- Two Fiber sets are provided
A. 12 of (40G to 40 G fiber) with QSFP+ for chassis side.
B. 12 of (40 G to $4 \times 10 \mathrm{G}$ split fiber) with QSFP+ for chassis side
- Can directly connect switch board in a chassis
A. Use 40G QSFP+ for both ends
B. Connect 10G with fiber coupler

http://www.primuscable.com/store/c/1621-Fiber-Coupler.aspx

Connection in NEC Cluster

1. Data path topology: tree to avoid loop
2. Management: using 48 port $\times 1 \mathrm{G}$ switch
$10 \times 1 \mathrm{GRJ}-45$
(Other experiment) mgmt

Future Extension

Intel ${ }^{\circledR}$ Ethernet Switch FM5224
 Microserver Switch Silicon

Unmatched uServer density

- Up to 72 2.5G ports
- 8 10GbE or 240 GbE uplinks

Rapid Array shared memory

- 8MB shared memory
- 400 nS cut-through latency

Intel ${ }^{\circledR}$ Flexpipe ${ }^{\text {TM }}$ Technology frame processing

- Intel Flexpipe Technology frame processing
- VXLAN and NVGRE support
- Advanced load balancing
- IPv4/v6 routing
- CEE/DCB with 8 traffic classes
- Server virtualization support

Compact, flexible port logic

- Integrated SFI, KR PHY
- All ports can also operate at
 10/100/1000/2500

Ref: https://intel.activeevents.com/sf13/connect/fileDownload/session/ A02B7458AF93EB0153BB728308E30F99/SF13 CLDS006 101.pdf

Intel ${ }^{\circledR}$ Flexpipe ${ }^{\text {Tm }}$ Technology Frame Processing Pipeline

Programmable and deterministic up to 960 Mpps

Configuration without Spine SW - \#1

Intel switch chip FM5224 (TOR in a chassis) is programmable
Connection of main data path is not shown: eg. using 40G-10G split cable..

More Chassis - Various Topology

- Up to 5 chassis (220 servers): full connection with shortest 2 hops - connect other four servers with four links in a chassis

- Up to 16 chassis (704 servers): hyper cube with max 5 hops

- 4D torus, fat tree, etc : more chassis with more hops or hot spots
- Combination with spine switches

Previous Plan

Original Network Connection Plan

- Use rcmaster as host server for DHCP, Firewall, IPMItool, tftp service
- Future experiment with Openflow

40G switch candidates

A) For 40G switch, the candidates are Arista 7050X and IBM G8264:

G8264: Low latency, Openflow ready switch.
Cons:

1. 64 port 10G switch (can be used with 40G-10G cables)
2. Support does not seem very well.
3. NEC America carries similar product asking a quotation.

Arista 7050QX-32-F: 32 ports x 40G switch

1. Ultra low latency 550 ns per hop
2. High throughput: 1.28Tbps
3. Openflow ready:
i. When the flow is on 1500 entry hardware flow table, latency is the same 550 ns
ii. Z (life time) license needed to start using openflow
iii. NICs in ATOM and TOR switch in ATOM server chassis are openflow ready
4. Open software and programmability, base is linux and can be seen as linux server 1. Additional E (lifetime) license provided for additional functions
5. Good observability
6. Better support. headquarter in Santa Clara
7. Can operate 100 V to 250 V AC
S. Matsushita, 04/10/2014, rev. 2.06

1G switch candidates

1. Use consumer grade switch.
eg. NETGEAR ProSAFE 24-Port Gigabit Ethernet Rackmount Switch (JGS524NA) http://amzn.to/1homYG5
Amazon Price: $\quad \$ 174.99$ (List Price: \$335.00)
2. Use server grade switch. $48 \times 1 \mathrm{G} / 100 \mathrm{M}$ switch with $4 \times 10 \mathrm{G}$ ports.

Web: http://www.aristanetworks.com/en/products/7048
Datasheet: http://www.aristanetworks.com/media/system/pdf/Datasheets/7048T-A \%20DataSheet.pdf

Pros)
i) $48 \times(1 \mathrm{G} / 100 \mathrm{M}) \mathrm{RJ}-45$ port, $4 \times 10 \mathrm{G}$ SFP/SFP+ (Fiber) ports
ii) low latency: 3us for 64B frame
iii) same software visibility as 40G switch.
iv) server grade, redundant AC (100-250V) and Fans

Cons)
v) not Openflow ready (using rather old generation switch LSI)
vi) expensive: $\$ 8,400$

Configuration with Arista Switch

- Assume openflow enabled on 40G switch.
mgmt \& to/from outside $1 \times 1 \mathrm{G}$ Electric
$1 \times 1 \mathrm{G}$ Electric (40G switch mgmt/Openflow control)

DCS-7048T 1G/10G x 48 port switch (no openflow)
DCS 7050QXF 40G x 32 port (Openflow ready)

End

