RAMCloud on ATOM Server

June 5, 2014 Satoshi Matsushita Stanford Univ. / NEC

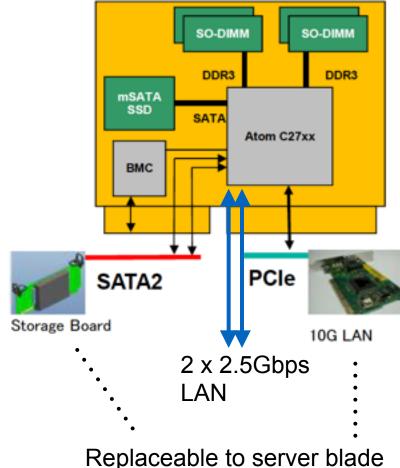
1

NEC Micro Modular Server

- Globally announced on May 20, 2014: (Press release : <u>NEC raises the bar for high density IT solution platforms for the public and private cloud</u>)

Chassis: Redundancy (power supply, Networks, Fans) + Hot Swap

- 2U in standard 19inch rack
- Up to 46 **Atom** server with 32GB DRAM / 128GB SSD / 2x 2.5GbE
- 2x 230Gbps switch (FM5224), 4x 40Gbps uplinks
- Chassis Total: 1.4TB DRAM, 5.8TB SSD
- max. 2kW
- 16 chassis in a rack:
 - 736 ATOM Servers : 5.9k core, 23TB DRAM, 92TB SSD: 50TOp/s, 20TFlops, DRAM 368TB/s, SSD 647GB/s



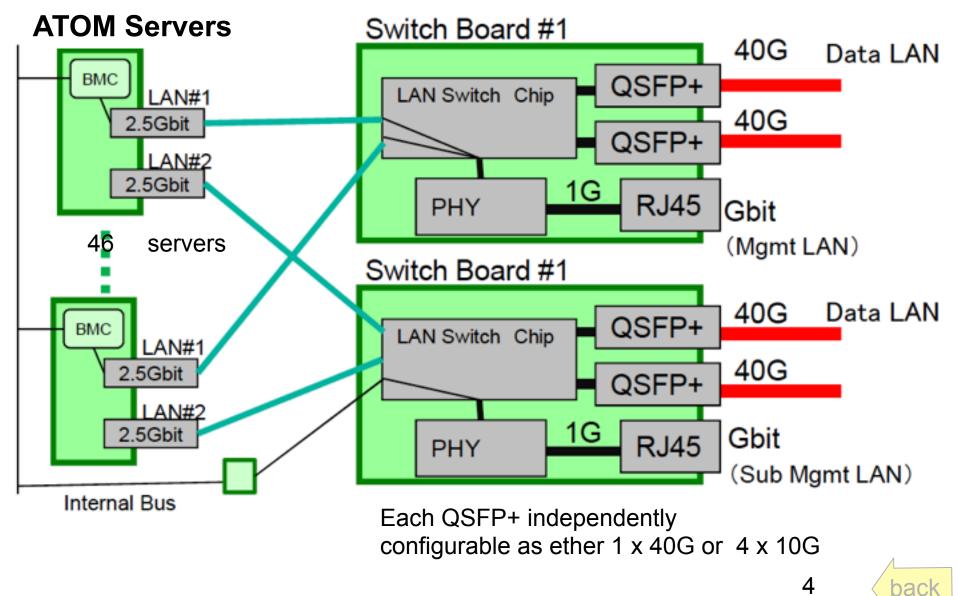
ATOM Server Blade

Server Module

Block Layout

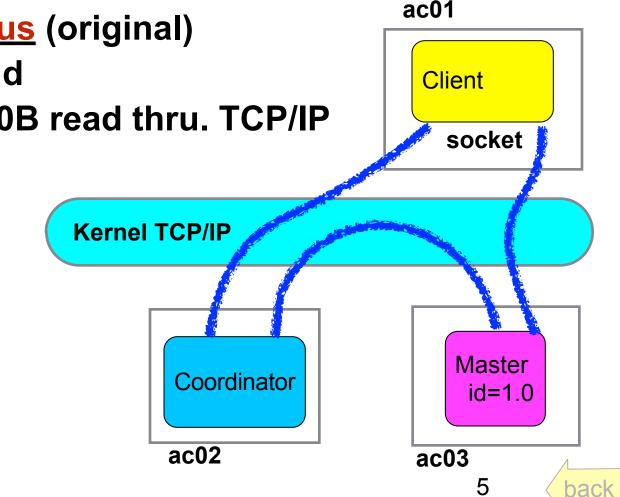
SEDCL Retreat, S. Matsushita, 06/05/2014, rev. 1.00

[SPECIFICATIONS]

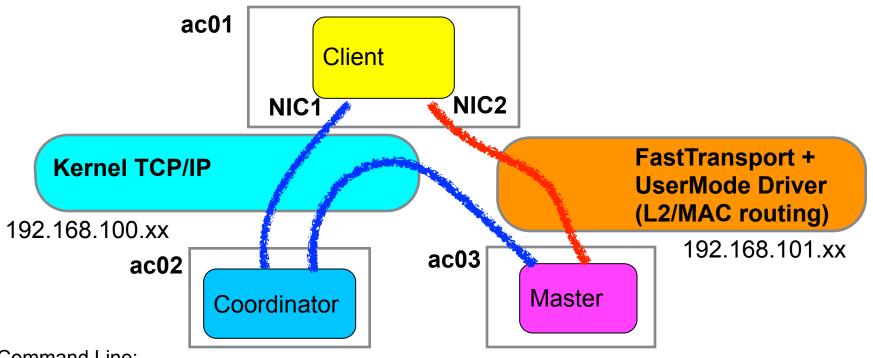

- 1x CPU(AtomTM C27xx)
- 4x SO-DIMM (Max 32GB) w. ECC
- 1x mSATA SSD (128GB)
- 1x BMC
- 1x SATA3 (To mSATA SSD)
- 2x SATA2 (To storage board)
- 2x 2.5Gbit LAN

Processor	Cores	Frequency	Power
C2750	8C / 8T	2.4GHz	20W
C2730	8C / 8T	1.7GHz	12W

3



Connection in a Chassis


Base Evaluation

- Disable replication (backup) and collocation of entity
- CentOS 6.5
 - Ping <u>120-150 us</u> (original)
- Ported RAMCloud
 - 67.8 us for 100B read thru. TCP/IP (tuned)

Improvement with User Space Driver

- User space driver only for critical path, ie. Master-Client data path No modification in RAMCloud code, changing startup parameter.
- Developed user mode driver for NIC2 based on Intel DPDK (Data Plane Development Kit)

Command Line:

\$ coordinator -C tcp:host=192.168.100.31,port=12246

\$ server -C tcp:host=192.168.100.31,port=12246 -L fast+dpdk:host=192.168.101.29,mac=94:DE: 80:AB:01:79,port=12247 -r 0

6

back

\$ ClusterPerf -C tcp:host=192.168.100.31,port=12246 --numClients 1 basic

Development Platforms for User Space Driver

		Summary	Performance	License	Comment
	PACKET_MMAP	Implementation on the standard linux kernel	At least one buffer copy needed because a device buffer cannot be mapped	GPL	-
	netmap			GPL/ BSD	Higher safety because user land code cannot access NIC registers directly
Ν	PF_RING / DNA (Direct NIC Access)	Possible to map device queue to user space	Feasible to realize zero-copy in user space driver	GPL/ BSD	-
	Intel DPDK			BSD (GPL for	Rather widely used
Our Choice	(Data Plane Developer Kit)			kernel module)	A

SEDCL Retreat, S. Matsushita, 06/05/2014, rev. 1.00

back

RAMCloud w. User Space Driver

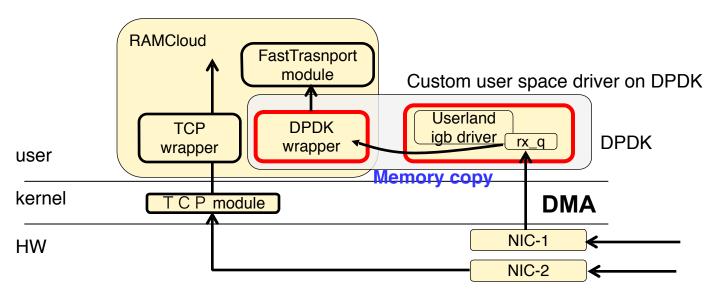


Figure. Customized transport for ATOM server (In-bound) (almost the same for out-bound)

- Limitation in current system:
 - L2 routing with 1500 B MTU
 - Non-shared: user space driver is exclusively used by a process
 - Asymmetric: User space driver on NIC-1, ordinal kernel driver on NIC-2
 - RAMCloud multithreading disabled

SEDCL Retreat, S. Matsushita, 06/05/2014, rev. 1.00

back

Current Performance

- Clusterperf.py basic, 30B key, Store and forward LAN switch
- Average and best/worst in 100 ms period. (7000 samples in 100B read)
- Room for tuning: long tail (Max), slow write.

				rccluster (2 + 32Gbps In			
Туре	Ave.	Min.	Max.	Bandwidth	Ave.	Bandwidth	
100B read	13.8 us	13.3	32.7	6.9 MB/s	5.1 us	18.7 MB/s	
1KB read	20.7 us	20.0	37.7	46.1 MB/s	6.9 us	137.6 MB/s	
10KB read	52.8 us	52.1	68.6	180.8 MB/s	10.4 us	914.1 MB/s	
100KB read	373.2 us	371.3	379.0	255.5MB/s	47.2 us	2.0 GB/s	
1MB read	3.9 ms	3.8	3.9	247.2 MB/s	420.8 us	2.2 GB/s	
100B write	<u>18.2 us</u>	17.4	43.6	5.2 MB/s	15.7 us	6.1 MB/s	
1KB write	25.6 us	24.7	64.1	37.2 MB/s	19.9 us	48.0 MB/s	Backup Enabled
10KB write	64.2 us	62.5	95.5	148.6 MB/s	38.5 us	247.7 MB/s	Enableu
100KB write	431.4 us	423.2	463.0	221.0MB/s	235.3 us	405.3 MB/s	
1MB write	4.7 ms	4.6	4.8	204.6MB/s	2.2 ms	436.0 MB/s	

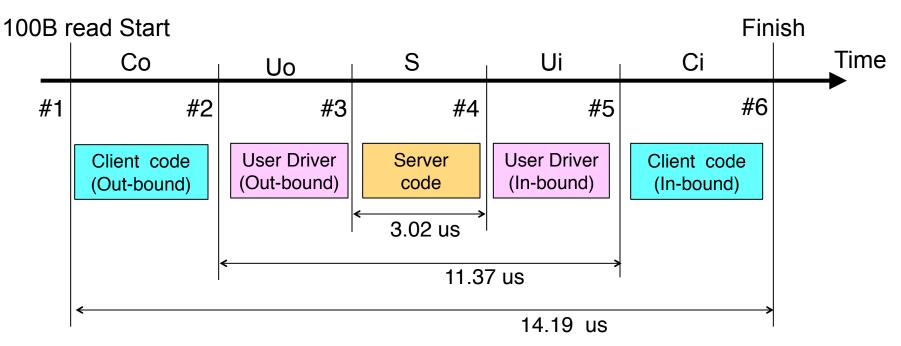
Analysis

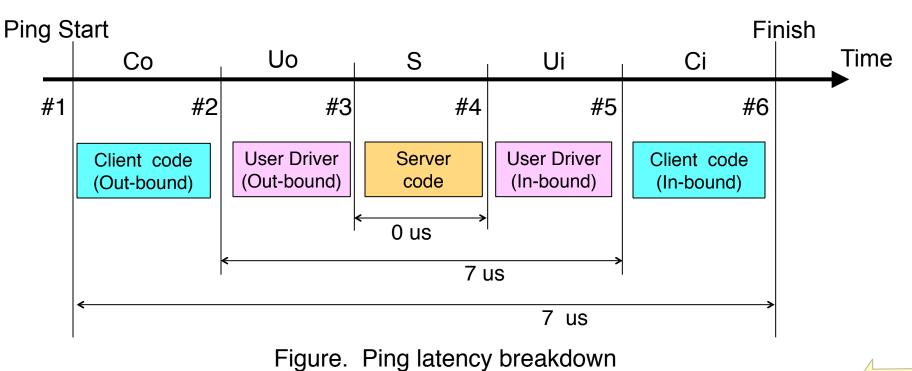
- Considerable gap between min. and max. implies room for improvement
- 1. Latency breakdown
- 2. Analysis of low level (hardware) latency
 - Comparison against ping with DPDK
 - Switch mode effect:

store-and-forward vs. cut-through

Latency Breakdown: 100B-Read

Code Segment	Elapsed	Section	Components	Xeon+IB (rccluster)
Client Code	2.82 us	Co + Ci	Client code including	
User Space Driver	8.35 us	Uo + Ui	Between DPDK driver outlets including NIC, LAN switch	3.9~3.7 us
Server Code	3.02 us	S	Server code including	1.2~1.4 us




Figure. 100B read latency breakdown

11

back

Latency Breakdown: Ping

Code Segment	Elapsed	Section	Components
Client Code	0 us	Co + Ci	None: IPMI-packet is DMA transfered by NIC (terminated in DPDK driver)
User Space Driver	7 us	Uo + Ui	Between DPDK driver outlets including NIC, LAN switch latency
Server Code	0 us	S	None : (same as Client code)

12

back

Cut-through

- Slight improvement for larger object size (due to 1500B MTU)
- Clusterperf.py basic, 30B key
- Average and best/worst in 100 ms period. (7000 samples in 100B read)

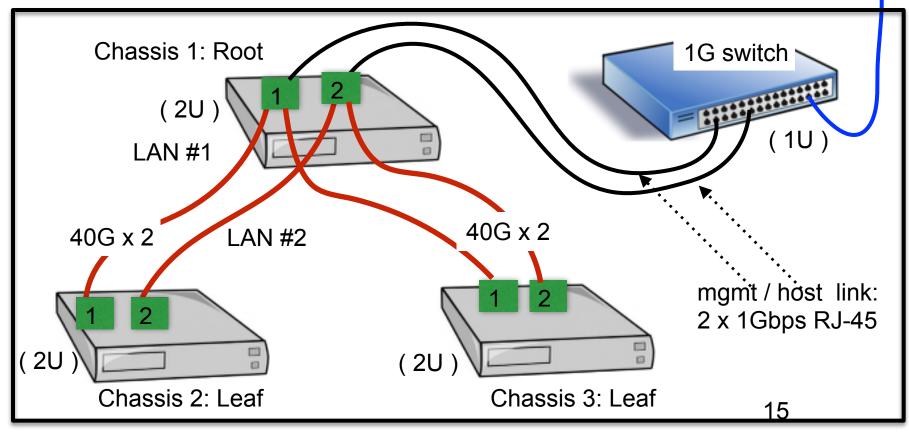
	Atom Server: 1.7GHz + 2.5G Ether							
LAN SW		Store-a	nd-For	ward	Cut-Through			
Туре	Ave.	Min.	Max. Bandwidth		Ave.	Min	Max	Bandwidth
100B read	13.8 us	13.3	32.7	6.9 MB/s	13.8 us	13.3	32.2	6.9 MB/s
1KB read	20.7 us	20.0	37.7	46.1 MB/s	17.9 us	17.3	29.0	53.4 MB/s
10KB read	52.8 us	52.1	68.6	180.8 MB/s	48.6 us	47.8	55.9	196.4 MB/s
100KB read	373.2 us	371.3	379.0	255.5MB/s	369.0 us	367.3	376.1	258.4 MB/s
1MB read	3.9 ms	3.8	3.9	247.2 MB/s	3.8 ms	3.8	3.8	251.4 MB/s
100B write	18.2 us	17.4	43.6	5.2 MB/s	18.1 us	17.4	35.2	5.3 MB/s
1KB write	25.6 us	24.7	64.1	37.2 MB/s	22.7 us	21.8	120.8	42.0 MB/s
10KB write	64.2 us	62.5	95.5	148.6 MB/s	60.1 us	58.2	100.3	158.6 MB/s
100KB	431.4 us	423.2	463.0	221.0MB/s	428.3 us	418.9	470.9	222.7 MB/s
1MB write	4.7 ms	4.6	4.8	204.6MB/s	4.6 ms	4.5	4.7	206.8 MB/s

improved

Consideration

- Large latency in user space driver (DPDK):
 - 8.35 us with 100B read, 7 us with ping
- Copy overhead would be negligible:
 - -~0.4us for 100B (~1Kbit) transfer at 2.5Gbps
 - Slight improvement with Cut-through mode
 - Negligible time for 100B memcpy
 - (50 ns for 1KB copy on 2.4GHz Xeon)
- To tune DPDK driver:
 - Further latency breakdown
 - DPDK parameter tuning
 - Cache footprint optimization??

to rcmaster


(existing host)

Spine-switch-less cluster at Stanford

- 1. Connected to for large scale experiments, application development
- 2. Connected to rcmaster with 2x 1Gbps link
- 3. Smaller size, lower power : ~1/5 of Xeon server

ATOM Cluster (NEC Modular Micro Server)

3 chassis: 132 Servers (1,056 cores), 4.1 TB DRAM, 16.5TB SSD

Conclusion

- Initial performance evaluation:
 - 13.8 us for 100B-read with custom user space driver on ATOM server through chassis switch (1 hop)
 - Further analysis and tuning
- Functional enhancement:
 - Symmetric driver and link aggregation with two NICs
 - Providing a turn-key-solution
 - with job/network/storage/VM management tools
 - on a standardized hardware platform
- Further evaluation on a larger scale system
 - On a new ATOM cluster at Stanford
 - Application development and evaluation
- Very welcome for feedback to improve the Micro modular server and future systems

