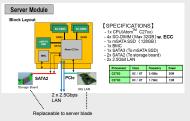
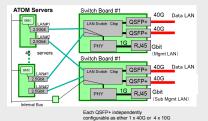
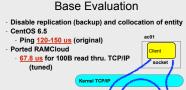
RAMCloud on an Atom Server


Satoshi Matsushita Stanford University / NEC


Overview


NEC Micro Modular Server hassis: Kedundancy (power supply, Networks, Fans) - 2U in standard 19inch rack - Up to 46 Atom server with 32GB DRAM / 128GB SSD / 2x 2.5GbE - 2x 23GGbps switch (FM5224), 4x 40Gbps uplinks - Chassis Total: 1.4TB DRAM, 5.8TB SSD 16 chassis in a rack: 736 ATOM Servers: 5.9k core, 23TB DRAM, 92TB SSD: 50TOp/s, 20TFlops, DRAM 368TB/s, SSD 647GB/s

ATOM Server Blade

Connection in a Chassis

User Space Driver

User space driver only for critical path, ie. Master-Client data path No modification in RAMCloud code, changing startup parameter Developed user mode driver for NIC2 based on Intel DPDK (Data Plane Development Kit)

Improvement with User Space Driver

Development Platforms for User Space Driver

	Summary	Performance	License	Comment
I ACKET_WINA	Implementation on the standard linux kernel	At least one buffer copy needed because a device buffer cannot be mapped	GPL	
netmap	device queue to	Feasible to realize zero-copy in user space driver	GPL/ BSD	Higher safety because user land code cannot access NIC registers directly
PF_RING / DNA (Direct NIC Access)			GPL/ BSD	
Intel DPDK (Data Plane Developer Kit)			BSD (GPL for kernel module)	Rather widely used

RAMCloud with User Space Driver

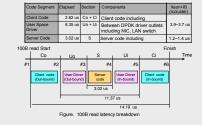
- Limitation in current system:
 L2 routing with 1500 B MTU
 Non-shared: user space driver is exclusively used by a process
 Asymmetric: User space driver on NIC-1, ordinal kernel driver
 on NIC-2.

 - RAMCloud multithreading disabled

Current Performance

Clusterperf.py basic, 30B key, Store and forward LAN switch Average and best/worst in 100 ms period. (7000 samples in 100B read) Room for tuning: long tail (Max), slow write.

	Atom Server: 1.7GHz + 2.5G Ether			recluster (2 32Gbps Infi				
Type	Ave.	Min.	Max.	Bandwidth	Ave.	Bandwidth		
100B read	13.8 us	13.3	32.7	6.9 MB/s	5.1 us	18.7 MB/s		
1KB read	20.7 us	20.0	37.7	46.1 MB/s	6.9 us	137.6 MB/s		
10KB read	52.8 us	52.1	68.6	180.8 MB/s	10.4 us	914.1 MB/s		
100KB read	373.2 us	371.3	379.0	255.5MB/s	47.2 us	2.0 GB/s		
1MB read	3.9 ms	3.8	3.9	247.2 MB/s	420.8 us	2.2 GB/s		
100B write	18.2 us	17.4	43.6	5.2 MB/s	15.7 us	6.1 MB/s		
IKB write	25.6 us	24.7	64.1	37.2 MB/s	19.9 us	48.0 MB/s	Backup Enabled	
10KB write	64.2 us	62.5	95.5	148.6 MB/s	38.5 us	247.7 MB/s		
100KB write	431.4 us	423.2	463.0	221.0MB/s	235.3 us	405.3 MB/s		
1MB write	4.7 ms	4.6	4.8	204.6MB/s	2.2 ms	436.0 MB/s		


Latency Analysis

Analysis

- Considerable gap between min. and max. implies room for improvement
- 1. Latency breakdown
- 2. Analysis of low level (hardware) latency
 - Comparison against ping with DPDK
- Switch mode effect:

store-and-forward vs. cut-through

Latency Breakdown: 100B-Read

Latency Breakdown: Ping

Code Segment Elapsed Section Components

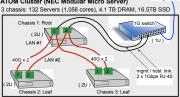
Ī	Client Code	0 us	Co + Ci		: IPMI-packet is terminated in D	DMA transfered PDK driver)	by		
	User Space Driver	7 us	Uo + Ui		een DPDK drive ding NIC, LAN s				
Ι	Server Code	0 us	S	None	e : (same as C	lient code)			
Ping S	tart					Fi	nish		
_	Co	Uo	_ S		Ui	Ci		Time	
#1	#2	#:	3	#4	#5	#6			
	Client code (Out-bound)	User Driver (Out-bound)	Sen		User Driver (In-bound)	Client code (In-bound)			
			0 us		1				
				7	us				
					7 us				
		Figure	. Ping la	atenc	y breakdown				

Cut-through Slight improvement for larger object size (due to 1500B MTU)

Clusterperf.py basic, 30B key Average and best/worst in 100 ms period. (7000 samples in 100B read)

	Atom Server: 1.7GHz + 2.5G Ether								
LAN SW	Store-and-Forward				. Cut-Through				
Type	Ave.	Min.	Max.	Bandwidth	Ave.	Min	Max	Bandwidth	
100B read	13.8 us	13.3	32.7	6.9 MB/s	13.8 us	13.3	32.2	6.9 MB/s	
IKB read	20.7 us	20.0	37.7	46.1 MB/s	17.9 us	17.3	29.0	53.4 MB/s	
10KB read	52.8 us	52.1	68.6	180.8 MB/s	48.6 us	47.8	55.9	196.4 MB/s	
100KB read	373.2 us	371.3	379.0	255.5MB/s	369.0 us	367.3	376.1	258.4 MB/s	
IMB read	3.9 ms	3.8	3.9	247.2 MB/s	3.8 ms	3.8	3.8	251.4 MB/s	
100B write	18.2 us	17.4	43.6	5.2 MB/s	18.1 us	17.4	35.2	5.3 MB/s	
IKB write	25.6 us	24.7	64.1	37.2 MB/s	22.7 us	21.8	120.8	42.0 MB/s	
10KB write	64.2 us	62.5	95.5	148.6 MB/s	60.1 us	58.2	100.3	158.6 MB/s	
100KB	431.4 us	423.2	463.0	221.0MB/s	428.3 us	418.9	470.9	222.7 MB/s	
1MB write	4.7 ms	4.6	4.8	204.6MB/s	4.6 ms	4.5	4.7	206.8 MB/s	
improved						de	graded		

Conclusions


Considerations

- Large latency in user space driver (DPDK): -8.35 us with 100B read, 7 us with ping
- Copy overhead would be negligible:
- -~0.4us for 100B (~1Kbit) transfer at 2.5Gbps
- Slight improvement with Cut-through mode
- Negligible time for 100B memcpy
- (50 ns for 1KB copy on 2.4GHz Xeon)
- To tune DPDK driver:
- Further latency breakdown
- DPDK parameter tuning
- Cache footprint optimization??

Spine-switch-less cluster at Stanford

- Connected to for large scale experiments, application de
 Connected to rcmaster with 2x 1Gbps link
- Smaller size, lower power: ~1/5 of Xeon serve

ATOM Cluster (NEC Modular Micro Server)

Conclusions

- Initial performance evaluation:
- 13.8 us for 100B-read with custom user space
- on ATOM server through chassis switch (1 hop)
- Further analysis and tuning
- Functional enhancement:
- Symmetric driver and link aggregation with two NICs
- Providing a turn-key-solution
- with job/network/storage/VM management tools - on a standardized hardware platform
- Further evaluation on a larger scale system
- On a new ATOM cluster at Stanford
- Application development and evaluation
- Very welcome for feedback to improve the Micro modular server and future systems