
UNCLASSIFIED LA-UR-14-21736!

ExMatEx Application “Workflow”!

 
Stanford RAMCloud Visit 

April 20, 2015!
Allen McPherson & Christoph Junghans!

Los Alamos National Laboratory!

UNCLASSIFIED LA-UR-14-21736! 2!

Brief Introduction to ExMatEx
•  Multi-scale materials!
•  Application driven!
•  Computer science focused!
•  ASCR Co-Design Center!

–  LANL, LLNL, SNL, ORNL !
–  Stanford, Caltech!
–  $4M/yr for 5 yrs!

»  starting third year!
•  Work in many areas: molecular dynamics, proxies, programming

models, DSLs, multi-scale algorithms, vendor interface, runtimes,
software stacks, etc.!

•  More info at http://exmatex.org!
•  Code: https://github.com/exmatex!
!

2	

UNCLASSIFIED LA-UR-14-21736! 3!

ExMatEx application “workflow”!
•  ExMatEx apps are…!

–  Multi-scale!
–  Dynamic!

•  Multi-scale applications integrate components…!
–  That dynamically interact with each other on-the-fly!

•  Components can be…!
–  Serial (single core)!
–  Single node!

»  Multi-core!
»  Accelerated (e.g. GPU)!

–  Multi-node!
»  Groups of the above!
»  Existing libraries!

•  Additional requirements: fault tolerance, in situ analysis, etc.!

Moving refinement window!

Macroscale!

Velocity!

Mesoscale!Microscale!

UNCLASSIFIED LA-UR-14-21736! 4!

ExMatEx application orchestration
•  2 components today!

–  Tasking!
–  Databases!

•  Dynamic tasking!
–  Hierarchical multi-scale!
–  Independent computations!
–  Uphill dependencies!
–  Variable granularity!
–  Application still logically synchronous at time-step boundary!

•  Databases (use largely driven by cloud/web influence)!
–  Use to accelerate overall computation (sub-scale calls dominate)!
–  Simple key/value stores!
–  60-200 doubles down, dozen doubles up!
–  Obviously, queries must be much faster than fine scale calls!

4	

UNCLASSIFIED LA-UR-14-21736! 5!

•  Fairly simple execution graph (tree)!
•  Dynamic scheduling (with load balancing)!
•  Semantically: asynchronous function calls!
•  Task granularity (eventually, prototype less demanding)!

–  Sub-scale calls Xms!
–  Database queries Xus!

•  Nutshell:!
–  Hierarchically schedule tasks!
–  Keep the machine load balanced!
–  Communicate data between components!
–  Manage data locality!

•  We’ve experimented with Charm++, CnC, OCR, libcircle, Swift, Erlang,
cloud (NodeJS, ZooKeeper, etc.), others!

Tasking/Scheduling Requirements!

UNCLASSIFIED LA-UR-14-21736! 6!

•  Monolithic!
–  Languages!

»  Charm++!
»  Chapel!
»  Etc.!

–  “Runtimes”!
»  Legion!
»  Uintah, etc.!

•  Advantages!
–  Soup to nuts!

•  Disadvantages!
–  Buy in required (tied to

programming model?)!
–  Flexibility (fixed/hidden models)!

Tasking/Scheduling Implementation!
•  Service-based!

–  Orthogonal, single-service!
»  Scheduling!
»  Messaging!
»  Caching!
»  Load balancing!
»  Etc.!

–  Common (or close to) APIs!
–  Pluggable!
–  Web/cloud model!

•  Advantages!
–  Flexibility, modularity!

•  Disadvantages!
–  Performance? Important?!

UNCLASSIFIED LA-UR-14-21736! 7!

•  Really a “caching” service!
–  Cache previous sub-scale calls!
–  Typically in-memory!
–  May want persistence too (subsequent runs of similar problem)!

•  Key/value API to start (additional functionality/APIs possible)!
•  Queries are tasks like any other task (same requirements)!
•  Transactional not required (i.e. eventual consistency OK)!

–  Transactional writes may be required in the future!
•  Beyond caching sub-scale calls!

–  Fault tolerance!
–  EOS!
–  Material properties!
–  Many others!

Database Requirements!

UNCLASSIFIED LA-UR-14-21736! 8!

•  Roll your own infeasible (given resources)!
•  Tons of work out there in web/cloud community (optimize for HPC)!
•  Simple APIs!
•  Ideally…!

–  Distributed!
–  Fault-tolerant (replicated)!
–  Dynamically balanced!
–  NVRAM-capable, persistent!

•  All this currently available from web/cloud community, but…!
–  Requires TCP/IP stack!

»  Largely unavailable on our big platforms!
»  Necessitates “custom” distribution strategies (for ExMatEx)!
»  Apply engineering dollars to add Infiniband?!
»  RAMCloud (Stanford a possible alternative)!

Database Implementation!

UNCLASSIFIED LA-UR-14-21736!

Fine-Scale
Query!

Update
Mesh Cells!

Exchange
Neighbors!Coarse-Scale LULESH!

Concurrent Nearest
Neighbor Query
(Forrest of Trees)!

New Point
Transfer &
Insertion!

Serial Tree
and DB
update!

Nearest Neighbor
Search!

Fine-Scale Point and
Wrapper code!

New Point
Created!Fine-Scale VPSC!

Interpolation
of nearest
neighbors!

New
Point
Created!

Interpolation of Neighbors!

Stress: 6 floats!
Texture: 60
floats! Strain: 6 floats!

Texture: 60
floats!

Not enough
neighbors found!

Enough
neighbors
found!

Interpolation
failed error
tolerance!

1!

2!

3!

4!

5!

6!
7!

8!

HIT!

MISS!

NoSQL
Database
(indexed into
from tree
nodes)!

For each cell in coarse scale LULESH, concurrently…!
 construct fine scale query for current cell 1!
 execute fine scale query on forest of nearest neighbor trees… 2!
 if enough neighbors found:!
 interpolate new point from neighbors 3!
 if new point within error tolerance: update current mesh cell 5!
 next LULESH cell 1!
 if new point not within error tolerance!
 execute fine scale call and return new point 4!
 next LULESH cell 1!
 if not enough neighbors found…!
 execute fine scale call and return new point 4; next LULESH cell 1!
When all LULESH cells updated, concurrently…!
 update forest of nearest neighbor trees with all new points 6!
 add all newly generated points to database 7!
 exchange neighbor cells based on LULESH decomposition 8!
Move to next timestep and repeat!

UNCLASSIFIED LA-UR-14-21736!

A! ANN! FSC! update! EXCH!

ANN: !approximate nearest neighbor search!
FSC: !fine scale call (VPSC)!
interp: !interpolation of nearest neighbors!
update:!insert new point into trees and database!
EXCH: !LULESH neighbor exchange!

ANN fails (miss) and a fine scale call
(FSC) is required.!

ANN succeeds (hit) and enough
neighbors are found to do a successful
interpolation.!

ANN succeeds (miss) but not enough
neighbors are found to interpolate so a
fine scale call (FSC) is required.!

interp!ANN! update! EXCH!B!

interp!ANN! update! EXCH!FSC!C!

For each cell in the coarse scale LULESH computation, one of
the three task chains (shown below) are executed. The tasks
in the chains are executed sequentially but each chain can be
executed concurrently on a per-cell basis. Each task chain
must run to completion within the 10 second time step budget.!

10%!

90%!

UNCLASSIFIED LA-UR-14-21736!

Coarse Scale
LULESH!

Nearest Neighbor
Search!

Neighbor Interpolation!

Fine Scale VPSC + wrapper!

NoSQL database of nearest neighbor
points!

~10 nodes ~100 cores (2x if double buffered)!
~10 nodes (2x if double buffered)!

~30 nodes ~300 cores!

~1000 nodes ~10,000 cores!

~20 nodes ~200 cores!

A!

B!

C!

A! ANN! FSC! update! EXCH!

interp!ANN! update! EXCH!B!

interp!ANN! update! EXCH!FSC!C!

