
S. Matsushita, 10/16/2013, rev. 0.61

Proposal of Transaction
on RAMCloud

rev0.61
06 Oct. 2013

Satoshi Matsushita

1

1Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Solution
• Resolve resource access conflicts in parallel execution
• Requirement)

• ACID: (atomicity, consistency, isolation, durability)
• CAP Theorem: (Can relax partition tolerance) - discuss later

2

Ideal Parallel Execution)

Time

job 0 job 1 job 2

Reality)

Time

job 0 job 1 job 2

Access
conflicts
may lead
wrong results

2Thursday, October 17, 13

http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)

S. Matsushita, 10/16/2013, rev. 0.61

Solution

3

Pessimistic Lock)

Time

job 0 job 1 job 2

Problem)
- Lower parallelism with giant locks
- Dead lock prone with fine locks
- Need releasing lock with node crash

Optimistic Lock)

Time

job 0 job 1 job 2
lock

unlock

Conflict
Detected

Cancel
Re-execute

Problem)
- Need conflict detection logic
- Lower Performance loss by frequent
conflicts
- Alternatives in abort detection

Text

Commit

Commit

Commit

Abort

3Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Optimistic Lock: General Solution

4
Time

job 0 job 1Obj1

Conflict:

• Conflict detection of true dependencies: RAW
• Renaming false dependencies : WAR, WAR

- Common technique in parallel execution such as
 Speculative MT, Transactional Mem., RDBM

Obj2
0/Rd1
0/Rd2

0/Wr1
Obj1’

0/Rd1

Obj1’’0/Wr1

0/Commit WriteBack

“Memory Renaming”

1/Rd1

1/Rd2

1/Wr2

Obj1 Obj2

Obj2’

1/Abort

Obj1

Possible
early conflict
detection

Obj2

Drop

Perpetualize atomically

4Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Design Assumptions
- Transaction life varies between short to long

- Try early detection of conflict with avoiding live lock
- Small probability of conflicts

- Use optimistic lock based design
- Otherwise use pessimistic lock at user level

- Small number of server nodes involved in a transaction
- Small probability of node failure during a transaction
- Faster crash recovery around 1 sec
- Can yield to blocking algorithm to prevent corner

cases

- First implement and tune hot-spot with real data

5

5Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Note)
• CAP Theorem

• Means: Consistency, Availability, Partition-tolerance
• RAMCloud natively does not have partition tolerance, only the partition

where coordinator exists works.

• Multiphase Commit
• If we can allow waiting for node recovery, two phase commit works.
• Since the blockage is not realistic, couple of non-blocking commit

algorithm have been introduced:
• Consensus (Paxos, Raft): Always live majority hides node crash
• Multiphase Commit - prevent commit blockage

• Quorum Commit: Majority side works during partitioning
• Three phase commit - still it is not easy to detect failure mode.
• Paxos commit, etc

6

6Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Components

7

Application

Master #1 Master #M

Backup #1 Backup #M

HDD/SSD HDD/SSD

RAMCloud
Server

Transaction
Monitor
(TM)

Transaction
State Repository
(TSR)

Maintains
persistent
transaction
state for recovery

Maintains
each object’s
status and
speculatively
written data

Transaction
handling for
an application

7Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Components - Functions

8

Functions TM:Trans.
Monitor

TSR:Trans.
State Repo.

Master Coordinator

Normal Op. Generate unique
Transaction ID.
Keep track objects
states.
2phase commit
coordination.

Store global
status of a
transaction
persistently

Keep object s’
status and
temporal data,
return
appropriate data

Maintain crash
information and
TM identifier.

At Recovery Continue 2phase
commit (resource
unlock)

TM accesses the
transaction status

Respond TM to
complete
commit/abort

Restart TM, or
notice TM
crashed node.

Possible
location

Client library,
Client node, or
Master

Master node as a
normal table.

Master node Coordinator

- If client application is restarted immediately (by coordinator, etc),
TM can be implemented in client library.

8Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Basic Flow: Life of a Transaction

9

Client

Time

TM TSRMasters
Start Tx Tid - Start

Read Obj1

Read History
(in memory)Write Obj2

Speculative write
 object (in log)

OK/AbortOK/Abort

OK/AbortOK/Abort

- Define Transaction priority uniquely with Tid: Transaction ID

OK M1 M2

Commit

Phase1

Tid - Started

Tid - CommittingAccept?
Accept?

Lock Obj

Tid - NRP
NoReturnPointPhase2

Do Commit

Remove Tid Info.
Done

OK/Abort

Obj unlocked

OK/Abort

OK/Abort

Abort by
any
crash

Gray Zone

Completing
commit

9Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Detailed discussion: outline

10

1. Client API
2. Conflict Management

i. Resolution at object access with transaction priority
ii. TMid/Tid for unique global transaction order
iii. Timeout to avoid deadlock

3. Commit - transition from non-blocking to blocking
 (Gray zone solution)
4. Recovery

i. Cleaning up by abort or completing commit
ii. TM implementation
 service process or library - depends on client recovery
iii. TSR implementation - in a normal table

5. Data structure of entities
6. Optimization

i. Callback instead of piggyback
ii. Separate key/state and data for objects in log

10Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

1. Client API
• Start Transaction

• tx_start(&tid); // return new tid
• Object Access

• tx_read(tid, tableId, key, &buf, &state...);
• tx_write (tid, tableId, key, &buf, &state...);
• tx_remove(), tx_multi-...(),

We can make tx_read, tx_write by default using tid=0
for non transactional operation.

• Commit Transaction
• tx_commit(tid, &state);
• tx_abort(tid, &state);

• Status
•tx_status(tid, &state); // return current transaction state

11

11Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

2. Truth Table of Conflicts Management

12

operation mode Tid 1 Tid 2 winner
mode1
mode2
both modes
both modes
both modes

read read both
read read Tid 1
read write Tid 1
write read Tid 1
write write Tid 1

Tid 1 (Older) < Tid 2 (Younger)

- Older transaction id wins at data access
- Provides only shared reads: can detect Read/Read conflict
with dummy write: Rd (Obj1) with Wr(Dummy1)

 Not Supported

12Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Tid, TMid

13

- TMid is given by coordinator at TM startup
- Tid

• Define Tid = (TMid, TM-localtime) at a transaction
generation
• Compare TMid only when local time is the same
• Preciseness is not needed, because Tid is just a priority
to decide winner transaction at object access time.

13Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Conflict management at object access

14

Tid 2

3

time

S

S

Else
 Abort transaction with newer Tid

U

Notation)
S: Started
A: Aborted
U: Uncommitted
 (Speculatively running)

object A:
Read by Tid2

wr A

rd A

- Compares Tid in Master. Abort newer Tid immediately.
 (Traditional technique in DBMS)
- Timeout to avoid deadlock by
incorrect code or client crash,
which freezes the oldest transaction.

If time_difference(Tid3, Tid2) > Tout
Then
 Leaves both alive and decides
 winer at commit time.

Tid

(older)

(newer)
abort

14Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Issues - False abort/Status piggyback

15

Tid

2

3 (newest)

time

S

S

U

object A

wr A

rd A

• False Abort: the conflict which aborted Tid3 disappears
when Tid2 is aborted later.

• Chain reaction of false abort may occur
• Leave it because provability of false abort is small.

• Abort notified as status return (piggyback).
• Tid2 is not aborted by Tid1-write, but by some request
in the future (Needs callback to optimize)

State: Read by Tid2

1 (oldest) S

object B
State: Read by Tid2

rd B

wrB
Reason of conflict disappears

abort

abort

15Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

3. Commit - Two phase commit
• TM coordinates commit operation
• Save durable state in TSR

• Committing: unlock object by abort (optimization)
• NRP: no-return-point for durable transition to commit

TM
(commit
 coordinator)

time

Masters
(commit slaves)

Can commit?

Check then
 Lock

If all yes

TSR
(Transaction state repository)

Commit and
 Unlock

Delete

Started Committing NRP

Phase1 Phase 2

Behavior at
Tx related nodes crash

Abort Commit

gray
zone

TM Waits and Retries (Blocking) 16
16Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

3. Commit - Racing conditions
• Racing condition:

• After NRP is written, TM start aborting in Phase2 due to (1) lost ‘OK’ or (2)
relevant node crash
• Then TM crashes and recovered TM read NRP and start commit.
• (1) cannot be distinguished from (4) lost NRP req

• Solution
• NRP is idempotent: TM retries (4) and waits (1)
• If TM failed retry, TM reads TSR after enough timeout to decides behavior.
• After initiating (4), TM stop aborting Tx by relevant node crash.

TM

time

Masters

TSR

Commit

NRP

Phase 2

gray zone

17

NRP write

OK

Crash &
 Recover

Abort

Read

(4)
(1)

(3)

(2): Some master
crash

17Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Crash Recovery - Clean up

18

• TM crash
• completes commit/abort

• Commits transaction if NRP is found. Otherwise
abort transaction.
• Fast restart required because other clients are
blocked by accessing the locked objects

• Server crash
• Reconstruct hash and object status in memory from
log

• TSR crash
• Recover status of transactions

18Thursday, October 17, 13

S. Matsushita, 10/16/2013, rev. 0.61

Implementation of entities

19

• TM - item 1 seems simplest and good for performance.
1. In client library such as crt0.

• Need client recovery mechanism by coordinator
2. In a master

• Need a location decision and lookup by coordinator
• Extra traffic and latency given because all the
access for the transaction goes to the master first.

3. In a separate agent in server node
• Need another recovery mechanism.

• TSR
• In a master with defining a table and save transaction
state as a normal object.

19Thursday, October 17, 13

