Proposal of Transaction
on RAMCloud

rev0.61
06 Oct. 2013
Satoshi Matsushita

S. Matsushita, 10/16/2013, rev. 0.61
Thursday, October 17, 13 1

e Requirement)

Solution

® Resolve resource access conflicts in parallel execution

e ACID: (atomicity, consistency, isolation, durability)

|deal Parallel Execution)
job 0 job1 job 2

/T

\ 4
Time
S. Matsushita, 10/16/2013, rev. 0.61

e CAP Theorem: (Can relax partition tolerance) - discuss later

Reality)
job0 job1 job2

Access
conflicts

may lead
wrong results

Time 2

Thursday, October 17, 13

http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)

Pessimistic Lock)
job 0 job1 job2

Problem)

Solution

Optimistic Lock)

Text

- Lower parallelism with giant locks
- Dead lock prone with fine locks
- Need releasing lock with node crash

S. Matsushita, 10/16/2013, rev. 0.61

job0O job1 job2
Conflict
~ Detected
ommit
A,
Commit Abort
Cancel
Re-execute
Commit
Time
Problem)

- Need conflict detection logic
- Lower Performance loss by frequent

conflicts
- Alternatives in abort detection

3

Thursday, October 17, 13

Optimistic Lock: General Solution

e Conflict detection of true dependencies: RAW

 Renaming false dependencies : WAR, WAR
- Common technique in parallel execution such as
Speculative MT, Transactional Mem., RDBM

job 0 Obj1 Obj2 job 1 Possible |
0/Rd1 early conflict
detection
0/Rd2
- ® ,,
0/Wr1 ; , _
\Qf Obj17 e T, E— Obj1 -
ORd1 ..) :_'_ ;;.-,-_’_’.':_ ~ ey e Obj2
owr1 M obj1” '
0/Commit WriteBack L
“—— B\ """ Drop 1/Abort
v “Memory Renaming”
Time Perpetualize atomically Conflict: @Obj1 (OO0bj2
4

S. Matsushita, 10/16/2013, rev. 0.61
Thursday, October 17, 13 4

Design Assumptions

- Transaction life varies between short to long
- Try early detection of conflict with avoiding live lock

- Small probability of conflicts
- Use optimistic lock based design
- Otherwise use pessimistic lock at user level

- Small number of server nodes involved in a transaction
- Small probability of node failure during a transaction
- Faster crash recovery around 1 sec

- Can yield to blocking algorithm to prevent corner
cases

- First implement and tune hot-spot with real data

S. Matsushita, 10/16/2013, rev. 0.61
Thursday, October 17, 13 5

Note)

® CAP Theorem
* Means: Consistency, Availability, Partition-tolerance

* RAMCloud natively does not have partition tolerance, only the partition
where coordinator exists works.

e Multiphase Commit
e If we can allow waiting for node recovery, two phase commit works.

 Since the blockage is not realistic, couple of non-blocking commit
algorithm have been introduced:

e Consensus (Paxos, Raft): Always live majority hides node crash

e Multiphase Commit - prevent commit blockage
e Quorum Commit: Majority side works during partitioning
* Three phase commit - still it is not easy to detect failure mode.
e Paxos commit, etc

S. Matsushita, 10/16/2013, rev. 0.61
Thursday, October 17, 13 6

Components

Maintains
persistent
transaction
state for recovery
f
Transaction
handling for
an application «
N
0 Maintains)
‘.

each object’s
status and
speculatively
written data

RAMCloud
Server

HDD/SSD

é HDD/SSD

S. Matsushita, 10/16/2013, rev. 0.61 V4

Thursday, October 17, 13

Components - Functions

- If client application is restarted immediately (by coordinator, etc)
TM can be implemented in client I|brary/

Functions | TM: Trans. TSR :Trans. Master Coordinator
Monitor State Repo.

Normal Op. |Generate unique Store global Keep object s’ Maintain crash
Transaction ID. tatus of a status and information and
Keep track objects trangactlon temporal data, TM identifier
states. persistently return
2phase commit appropriate data
coordination.

At Recovery |Continue 2phase / TM accesses the |Respond TM to |Restart TM, or
commit (resource |transaction status |complete notice TM
unlock) commit/abort crashed node.

Possible Client library, Master node as a |Master node Coordinator

location Client node, or normal table.
Master

S. Matsushita, 10/16/2013, rev. 0.61 8
Thursday, October 17, 13 8

Basic Flow: Life of a Transaction

- Define Transaction priority uniquely with Tid: Transaction ID

Client ™ Masters TSR
v__ Start Tx Tid - Start .,
- T OK Tid - Started
i Read Obj1 Mf M2
l OK/Abort OK/Abort Read History
Abort by . . (in memory)
any Write Obj2 d
crash “—oxAbort . OK/Abort Speculative write
Commit object (in log)
N R/
Pha?e1 Accept? \ Tid - Committing
l Accept? 0oty
: Lock Obj
Gy Zone T Phasep ORABT NoReturnPoint ¥
Completing Do Commit,¥ v none Tid - NRP
commit — OKJAbort = .
\/ vy Remove Tid Info.
Time Obj unlocked

S. Matsushita, 10/16/2013, rev. O.

61

9

Thursday, October 17, 13

o On

Detailed discussion: outline

. Client API
. Conflict Management

I. Resolution at object access with transaction priority
ii. TMid/Tid for unique global transaction order
lii. Timeout to avoid deadlock

. Commit - transition from non-blocking to blocking

(Gray zone solution)

. Recovery

I. Cleaning up by abort or completing commit
li. TM implementation

service process or library - depends on client recovery
lii. TSR implementation - in a normal table

. Data structure of entities
. Optimization

I. Callback instead of piggyback
ii. Separate key/state and data for objects in log
S. Matsushita, 10/16/2013, rev. 0.61 10

Thursday, October 17, 13 10

1. Client API

e Start Transaction

e tx_start(&tid); // return new tid

* Object Access
* tx_read(tid, tableld, key, &buf, &state...);
* tx_write (tid, tableld, key, &buf, &state...);

e tx_remove(), tx_multi-...(),
We can make tx_read, tx_write by default using tid=0
for non transactional operation.

 Commit Transaction
e tx_commit(tid, &state);
* tx_abort(tid, &state);

e Status

otx_status(tid, &state); // return current transaction state

11
S. Matsushita, 10/16/2013, rev. 0.61
Thursday, October 17, 13 11

2. Truth Table of Conflicts Management

- Older transaction id wins at data access

- Provides only shared reads: can detect Read/Read conflict
with dummy write: Rd (Obj1) with Wr(Dummy1)

Tid 1 (Older) < Tid 2 (Younger)

operation mode |Tid 1 |Tid 2 winner
=I;nodel read |read both
mo@ Not Supported ——read TL"
both modes read |write Tid 1
both modes write |read Tid 1
both modes write |write Tid1l

S. Matsushita, 10/16/2013, rev. 0.61

Thursday, October 17, 13

12

Tid, TMid

- TMid is given by coordinator at TM startup

- Tid
* Define Tid = (TMid, TM-localtime) at a transaction
generation
e Compare TMid only when local time is the same
* Preciseness is not needed, because Tid is just a priority
to decide winner transaction at object access time.

13
S. Matsushita, 10/16/2013, rev. 0.61

Thursday, October 17, 13

13

Conflict management at object access

- Compares Tid in Master. Abort newer Tid immediately.

_ (Traditional technique in DBMS)
- Timeout to avoid deadlock by

incorrect code or client crash, e
which freezes the oldest transaction. : Notation) f

: S: Started
: A: Aborted
time . U: Uncommitted :
(Speculatively running)
Tid2 S - - > | e
(older) rd A
@ If time_difference(Tid3, Tid2) > Tout
: Then
Tid 3 S abort Leaves both alive and decides
(newer) : o
winer at commit time.
wr A
Else
object A: Abort transaction with newer Tid
Read by Tid2 14

S. Matsushita, 10/16/2013, rev. 0.61
Thursday, October 17, 13

14

Issues - False abort/Status piggyback

e False Abort: the conflict which

aborted Tid3 disappears

when Tid2 is aborted later.
e Chain reaction of false abor

t may occur

e Leave it because provabiliw
e Abort notified as status return
* Tid2 is not aborted by Tid1-
in the future (Needs callback

 of false abort is small.

(piggyback).
write, but by some request

to optimize)

Tid time
S >
1 (oldest) — | B U
Reason of conflict disappears- -~
2 S A A > %
rd A % rd B abort
3 (newest) S 1 abort
wr A
\ 4
object A object B
2 State: Read by Tid2 15

State: Read by Tid

S. Matsushita, 10/16/2013, rev. 0.61

15

Thursday, October 17, 13

3. Commit - Two phase commit

* TM coordinates commit operation
e Save durable state in TSR
e Committing: unlock object by abort (optimization)
* NRP: no-return-point for durable transition to commit
time

Phase1 Phase 2
™ Can commit? If all yes
. —» > Fum £ e
(commit A 1 . 4
coordinator) " b

2w Check then gray Commit and

Masters % Lock zone %, Unlock

_ ! > Ot >
(commit slaves) ¥ > L ¥ >' 'Delete
_ v '
TSR [Staried | Committing N
(Transaction state repository)
Behavior at Abort
Tx related nodes crash . : :
TM Waits and Retries (Blocking) 16

S. Matsushita, 10/16/2013, rev. 0.61

Thursday, October 17, 13

16

e Solution

3. Commit - Racing conditions

e Racing condition:

® After NRP is written, TM start aborting in Phase2 due to (1) lost ‘'OK’ or (2)
relevant node crash
e Then TM crashes and recovered TM read NRP and start commit.
* (1) cannot be distinguished from (4) lost NRP req

* NRP is idempotent: TM retries (4) and waits (1)

e If TM failed retry, TM reads TSR after enough timeout to decides behavior.

e After initiating (4), TM stop aborting Tx by relevant node crash.

time gray zone
Crash & g

™ — 4—y> Phase 2 'ﬁéaav'ér’LT.l

RP write (3) :

'-, M0 % apont :
Masters | :(4) N > |

. : . v Commit

' : (2): Some master

OK..' crash Read

']
TSR |

S. Matsushita, 10/16/2013, rev. 0.61

g

17

Thursday, October 17, 13

17

Crash Recovery - Clean up

 TM crash
e completes commit/abort
e Commits transaction if NRP is found. Otherwise
abort transaction.
* Fast restart required because other clients are
blocked by accessing the locked objects
e Server crash
* Reconstruct hash and object status in memory from
log
e TSR crash
* Recover status of transactions

18

S. Matsushita, 10/16/2013, rev. 0.61
Thursday, October 17, 13 18

Implementation of entities

* TM - item 1 seems simplest and good for performance.
1. In client library such as crt0.
* Need client recovery mechanism by coordinator
2. In a master
* Need a location decision and lookup by coordinator
e Extra traffic and latency given because all the
access for the transaction goes to the master first.
3. In a separate agent in server node
* Need another recovery mechanism.
e TSR
* In a master with defining a table and save transaction
state as a normal object.

19

S. Matsushita, 10/16/2013, rev. 0.61
Thursday, October 17, 13 19

