
S. Matsushita, 10/21/2013, rev. 0.63

Proposal of Transaction
on RAMCloud

rev0.63
21 Oct. 2013

Satoshi Matsushita

1

r0.63 Mod

1Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Problem Statement

• Introduce ”Transaction” to RAMCloud
• What is ”Transaction” ?
• Wikipedia ‘Database Transaction’:
• To provide reliable units of work that allow correct

recovery from failures and keep a database consistent
even in cases of system failure, when execution stops (completely
or partially) and many operations upon a database remain
uncompleted, with unclear status.

• To provide isolation between programs accessing a database
concurrently. If this isolation is not provided, the program's
outcome are possibly erroneous.

• User declares a partial sequence of data (object)
access as “a Transaction”, to which RAMCloud
provides ‘Database Transaction’ feature.

2

r0.63 Mod

2Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Characteristics of a Transaction
1. Duration varies from short to long: 0.1ms to 100ms
2. Very small chance of conflict to other transactions

3

r0.63 Add

Example Duration Chance of Conflict
Analytic (Data analysis) min. to hours none after start
Ticket or seat reservation to a few sec small
Banking to a few sec small, at money

transfer
Online shopping to a few sec small, can split to

many independent
transactionsStock trading 1 to 100ms small or medium

SNS 100 to 1000 ms small
Other web services 100 to 1000 ms small

3Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Issues in Parallel Execution
• Resource access conflict occurs in parallel execution
• Requirement to avoid the problem

• ACID: (atomicity, consistency, isolation, durability)
• CAP Theorem: (Can relax partition tolerance) - discuss later

4

Ideal Parallel Execution)

Time

job 0 job 1 job 2

Reality)

Time

job 0 job 1 job 2

Dirty read
(access
conflicts)
may lead
wrong results

Activity
with ACID

r0.62 Mod

4Monday, October 21, 13

http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)

S. Matsushita, 10/21/2013, rev. 0.63

Conflict Solutions

5

Pessimistic Lock)

Time

job 0 job 1 job 2

Pros & Cons)
- Lower parallelism with giant locks
- Dead lock prone with fine locks
- Need releasing lock with node crash

Optimistic Lock)

Time

job 0 job 1 job 2
lock

unlock

Conflict
Detected

Cancel

Re-execute

Pros & Cons)
- Need conflict detection logic
- Lower Performance loss by frequent
conflicts
- Alternatives in abort detection

Text

Commit

Commit

Commit

Abort

ACID
writeback

5Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Optimistic Lock: General Solution

6
Time

job 0 job 1Obj1

• Conflict detection of true dependencies: RAW (Read after Write)

• Renaming false dependencies : WAR, WAR
- Common technique in parallel execution such as
 Speculative MT, Transactional Mem., RDBM

Obj2
0/Rd1
0/Rd2

0/Wr1
Obj1’

0/Rd1

Obj1’’0/Wr1

0/Commit
WriteBack

 local buffering, aka.
“Memory Renaming”

1/Rd1

1/Rd2

1/Wr2
Obj2’

1/Abort

Obj1

Possible
early conflict
detection

Obj2

Drop

Perpetualize atomically

r0.62 Mod

6Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Assumptions and Strategies
Application Specific)
- Transaction life varies between short to long

- Try early conflict detection avoiding livelock
- Small probability of conflicts

- Use optimistic lock based design
- Otherwise use pessimistic lock at user level

- Small probability of node failure during a transaction
- Involve small number of different nodes in a transaction

RAMCloud Specific)
- Faster crash recovery around 1 sec

- Can yield to blocking algorithm to prevent corner cases
- A separate log on each master

7

r0.63 Mod

7Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Note)
• CAP Theorem

• Means: Consistency, Availability, Partition-tolerance
• RAMCloud natively does not have partition tolerance, only the partition

where coordinator exists works.

• Multiphase Commit
• If we can allow waiting for node recovery, two phase commit works.
• Since the blockage is not realistic, couple of non-blocking commit

algorithm have been introduced:
• Consensus (Paxos, Raft): Always live majority hides node crash
• Multiphase Commit - prevent commit blockage

• Quorum Commit: Majority side works during partitioning
• Three phase commit - still it is not easy to detect failure mode.
• Paxos commit, etc

8

8Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Traditional Transaction System

9

Application1

Active Standby

HDD/SSD HDD/SSD

Data Store

Transaction
Monitor
(TM)

Data Storage

Transaction
handling for
all applications
(Shared)

Application n

Scalability Bottleneck

r0.63 Mod

9Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Traditional Transaction: Sharding

10

To Be Added

- Distribute database into several servers for scalability

- Micro-Sharding: design SQL transaction in KVS
• Problems)
• Not easy to design field in record
• Not always possible to allocate independent shard

Ref: Microsharding: Mapping Relational Workloads on Key-Value Stores,
Junichi Tatemura, Hakan Hacigumus, et. al., NEC Lab. America

r0.63 Mod

10Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Traditional Transaction: Sinfonia

11

• User library manages transaction - distributed
transaction monitor design

• Two phase commit
• Compare and swap at commit time

• Recovery mechanism not included
• Node failure detection
• Checkpoint based recovery for node crash
• Recovery coordinator for coordinator crash

• Conditional commit (two phase commit) only
• Delay inquiry to all relevant nodes at commit time

To Be Added

Ref: Sinfonia: A New Paradigm of r Building Scalable Distributed Systems,
Macros K. Aguilera (HP Lab.), et. al. , SOSP, Oct. 07

r0.63 Mod

11Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Proposal: Summary

12

• Distributed TM (transaction monitor) for scalability
• Library based design for low latency

• Integrated crash recovery
• triggered by RAMCloud coordinator which is always

available by consensus algorithm
• Taking advantage of distributed log in RAMCloud master
• Natively all the checkpoints are available and durable

• Natural transaction API
• No need to design database field or a set of query
• without exposing:
• Node crash/recovery
• Data structure such as log, checkpoint

r0.63 Add

12Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Proposal: Components

13

Application 1

Master #1 Master #M

Backup #1 Backup #M

HDD/SSD HDD/SSD

RAMCloud
Server

Transaction
Monitor 1
(TM)

Transaction
State Repository
(TSR)

Maintains
persistent
transaction
state for recovery (shared)

Maintains
each object’s
status and
speculatively
written data

Transaction
handling for
an application
(Dedicated
entity for each
Transaction)

13Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Components - Functions

14

Functions TM:Trans.
Monitor

TSR:Trans.
State Repo.

Master Coordinator

Normal Op. Generate unique
Transaction ID.
Keep track objects
states.
2phase commit
coordination.

Store global
status of a
transaction
persistently

Keep object s’
status and
temporal data,
return
appropriate data

Maintain crash
information and
TM identifier.

At Recovery Continue 2phase
commit (resource
unlock)

TM accesses the
transaction status

Respond TM to
complete
commit/abort

Restart TM, or
notice TM
crashed node.

Possible
location

Client library,
Client node, or
Master

Master node as a
normal table.

Master node Coordinator

- If client application is restarted immediately (by coordinator, etc),
TM can be implemented in client library.

14Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Basic Flow: Life of a Transaction

15

Client

Time

TM TSRMasters
Start Tx Tid - Start

Read Obj1

Read History
(in memory)Write Obj2

Speculative write
 object (in log)

OK/AbortOK/Abort

OK/AbortOK/Abort

- Define Transaction priority uniquely with Tid: Transaction ID

OK M1 M2

Commit

Phase1

Tid - Started

Tid - CommittingAccept?
Accept?

Lock Obj

Tid - NRP
NoReturnPointPhase2

Do Commit

Remove Tid Info.
Done

OK/Abort

Obj unlocked

OK/Abort

OK/Abort

Abort by
any
crash

Gray Zone

Completing
commit

15Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Detailed discussion: outline

16

1. Client API
2. Conflict Management

i. Resolution at object access with transaction priority
ii. TMid/Tid for unique global transaction order
iii. Timeout to avoid deadlock

3. Commit - transition from non-blocking to blocking
 (Gray zone solution)
4. Recovery

i. Cleaning up by abort or completing commit
ii. TM implementation
 service process or library - depends on client recovery
iii. TSR implementation - in a normal table

5. Implementation Control / Data structure
6. Optimization

i. Callback instead of piggyback
ii. Separate key/state and data for objects in log

r0.63 Mod

16Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

1. Client API
• Start Transaction

• tx_start(&tid); // return new tid
• Object Access

• tx_read(tid, tableId, key, &buf, &state...);
• tx_write (tid, tableId, key, &buf, &state...);
• tx_remove(), tx_multi-...(),

We can make tx_read, tx_write by default using tid=0
for non transactional operation.

• Commit Transaction
• tx_commit(tid, &state);
• tx_abort(tid, &state);

• Status
•tx_status(tid, &state); // return current transaction state

17

17Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

2. Truth Table of Conflicts Management

18

operation mode Tid 1 Tid 2 winner
mode1
mode2
both modes
both modes
both modes

read read both
read read Tid 1
read write Tid 1
write read Tid 1
write write Tid 1

Tid 1 (Older) < Tid 2 (Younger)

- Older transaction id wins at data access
- Provides only shared reads: can detect Read/Read conflict
with dummy write: Rd (Obj1) with Wr(Dummy1)

 Not Supported

18Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Tid, TMid

19

- TMid is given by coordinator at TM startup
- Tid

• Define Tid = [TMid, TM-localtime] at a transaction
generation // note: [a, b] = concatenation of ‘a’ and ‘b’
• Compare TMid only when local time is the same
• Preciseness is not needed, because Tid is just a priority
to decide winner transaction at object access time.

19Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Conflict management at object access

20

Tid 2

3

time

S

S

Else
 Abort transaction with newer Tid

U

Notation)
S: Started
A: Aborted
U: Uncommitted
 (Speculatively running)

object A:
Read by Tid2

wr A

rd A

- Compares Tid in Master. Abort newer Tid immediately.
 (Traditional technique in DBMS)
- Timeout to avoid deadlock by
incorrect code or client crash,
which freezes the oldest transaction.

If time_difference(Tid3, Tid2) > Tout
Then
 Leaves both alive and decides
 winer at commit time.

Tid

(older)

(newer)
abort

20Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Issues - False abort/Status piggyback

21

Tid

2

3 (newest)

time

S

S

U

object A

wr A

rd A

• False Abort: the conflict which aborted Tid3 disappears
when Tid2 is aborted later.

• Chain reaction of false abort may occur
• Leave it because provability of false abort is small.

• Abort notified as status return (piggyback).
• Tid2 is not aborted by Tid1-write, but by some request
in the future (Needs callback to optimize)

State: Read by Tid2

1 (oldest) S

object B
State: Read by Tid2

rd B

wrB
Reason of conflict disappears

abort

abort

21Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

3. Commit - Two phase commit
• TM coordinates commit operation
• Save durable state in TSR

• Committing: unlock object by abort (optimization)
• NRP: no-return-point for durable transition to commit

TM
(commit
 coordinator)

time

Masters
(commit slaves)

Can commit?

Check then
 Lock

If all yes

TSR
(Transaction state repository)

Commit and
 Unlock

Delete

Started Committing NRP

Phase1 Phase 2

Behavior at
Tx related nodes crash

Abort Commit

gray
zone

TM Waits and Retries (Blocking) 22
22Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

3. Commit - Racing conditions
• Racing condition: Note that abort and commit are unilateral

• After NRP is written, TM start aborting in Phase2 due to (1) ‘OK’ loss or (2)
relevant node crash
• Then TM crashes. The recovered TM reads NRP then starts commit.
• (1) cannot be distinguished from (4) lost NRP req

• Solution
• NRP is idempotent: TM retries (4) and waits (1)
• If TM failed retry, TM reads TSR after enough timeout to decide behavior.
• After initiating (4), TM waits any relevant node recovery (blocking).

TM

time

Masters

TSR

Commit

NRP

Phase 2

gray zone

23

NRP write

OK

Crash &
 Recover

Abort

Read

(4)
(1)

(3)

(2): Some master
crash

Conflict

Phase 1

r0.63 Mod

23Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

3. Commit - State Machine
TM (coordinating)

Ref: A Formal Model of Crash Recovery in a Distributed System, Dale Skeen
and Michael Stonebraker, 1983

24

Masters

q1 q2

w1

abort1

abort2

commit1

p2

commit2

n1

Can commit?
 no

legend)
received msg

reply

Can commit?
 yes

abort
ack

commit
ack

Com. Request
Can commit?

no
-

yes (some no)
abort

all yes
NRP write

chk
NRP ack

commit

no ack
NRP write

(retry)

NRP
commit

(retry)
timeout

-
no NRP

abort

TM
recovery

r0.63 Mod

24Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

4. Crash Recovery - Clean up

25

• TM crash
• completes commit/abort

• Commits transaction if NRP is found. Otherwise
abort transaction.
• Fast restart required because other clients are
blocked by accessing the locked objects

• Server crash
• Reconstruct hash and object status in memory from
log

• TSR crash
• Recover status of transactions

25Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

5. Implementation Alternatives

26

• TM - item 1 seems simplest and good for performance.
1. In client library such as crt0.

• Pros) Application (Tire2, Tire3) needs to be recovered to continue
web service anyway
• Cons) Need client recovery mechanism by coordinator

2. In a master
• Need a location decision and lookup by coordinator
• Cons) Extra access latency and network traffic by additional hop in
data access.

3. In a separate process/thread in a client node
• Need another recovery mechanism
• Cons) Extra latency by process communication and dispatch

• TSR
• In a master with defining a table and save transaction
state as a normal object.

r0.63 Mod

26Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

5. Implementation Proposal

27

• TM as client library
• Coordinator detects client failure and restarts
• Naming issue: ‘It would better to call an application
promote to server by requesting recovery to
coordinator’.

• TMid given by coordinator
• Generate: Tid = [TMid, TM’s local time]
• Timed loosely correct TM’s local time

• TSR as a specific table
• (Key, Value) = (Tid, TransactionState)
• How to find active transactions associated to a TMid?

• Range query : [TMid, time min] to [TMid, time max]
• Other object : (TMid, list_of_Tids)

[a, b] denotes concatenation

r0.63 Mod

27Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

5. Implement TM in Client Library

28

• Crt0 contacts coordinator to get TMid and register
application info. for recovery.
• User can modify transaction algorithm by modifying library.

App.
time

Lib.
(TM)

Coord.

Crt0

TMid =
TMalloc

TSR

Master.

exit
Tid0 =
startTx

rd/wr
Tx

free(TMid)

crash

crash
detection

restart (may be on
 different node)

Recover
TM

Clean Up

App (server) X
App (server) X

Promote
to server

r0.63 Mod

28Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

5. TM Data Structure

29

To Be Done.

29Monday, October 21, 13

S. Matsushita, 10/21/2013, rev. 0.63

Master Data Structure

30

To Be Done.

30Monday, October 21, 13

