Proposal of Transaction
on RAMCloud

rev0.63
21 Oct. 2013
Satoshi Matsushita

S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13 1

Problem Statement

® |Introduce "Transaction” to RAMCloud

e What is "Transaction” ?
e Wikipedia ‘Database Transaction’:

* To provide reliable units of work that allow correct

recovery from failures and keep a database consistent

even in cases of system failure, when execution stops (completely
or partially) and many operations upon a database remain
uncompleted, with unclear status.

* To provide isolation between programs accessing a database
Concurrently. If this isolation is not provided, the program's
outcome are possibly erroneous.

e User declares a partial sequence of data (object)
access as “a Transaction”, to which RAMCloud
provides ‘Database Transaction’ feature.

S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13

Characteristics of a Transaction

1. Duration varies from short to long: 0.1ms to 100ms

2. Very small chance of conflict to other transactions

Example

Duration

Chance of Conflict

Analytic (Data analysis)

min. to hours

none after start

Ticket or seat reservation [to a few sec small

Banking to a few sec small, at money
transfer

Online shopping to a few sec small, can split to
many independent

Stock trading 1 to 100ms small or medium

SNS 100 to 1000 ms |small

Other web services 100 to 1000 ms |small

S. Matsushita, 10/21/2013, rev. 0.63

Monday, October 21, 13

Issues In Parallel Execution

® Resource access conflict occurs in parallel execution

* Requirement to avoid the problem Reality)
e ACID: (atomicity, consistency, isolation, durability)

e CAP Theorem: (Can relax partition tolerance) - discuss later

|deal Parallel Execution)
job 0 job1 job 2

\ 4
Time
S. Matsushita, 10/21/2013, rev. 0.63

Activity
....................... _Wlth ACID

job0 job1 job 2

Dirty read

(access
conflicts)
may lead
wrong results

Time 4

Monday, October 21, 13

http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)

Conflict Solutions

Pessimistic Lock)
job 0 job1 job2

Pros & Cons)

- Lower parallelism with giant locks
- Dead lock prone with fine locks

Text

- Need releasing lock with node crash

S. Matsushita, 10/21/2013, rev. 0.63

Optimistic Lock)

job0O job1 job2
Conflict
- j Detected
Abort Cancel
Re-execute
Commit
Y writeback
Time

Pros & Cons)
- Need conflict detection logic
- Lower Performance loss by frequent

conflicts
- Alternatives in abort detection

5

Monday, October 21, 13

Optimistic Lock: General Solution

e Conflict detection of true dependencies: RAW (Read after Write)

e Renaming false depe

ndencies : WAR, WAR

- Common technique in parallel execution such as
Speculative MT, Transactional Mem., RDBM

job 0
0/Rd1

Obj1 Obj2 job 1

0/Rd2
O

<
<«

0/Wr1

0/Rd1 [

3

0/Wr1 lobj1 &
WriteBack

e

''''''

-

\Q Obj1" ' N

-
-

0/Commit

——
J local buffering, aka.

“Memory Renaming”

Time

S. Matsushita, 10/21/2013, rev. 0.63

1/Abort

Perpetualize atomically

Possible
early conflict
detection

-(2)-Obj1--

Monday, October 21, 13

Assumptions and Strategies

Application Specific)
- Transaction life varies between short to long

- Try early conflict detection avoiding livelock
- Small probability of conflicts

- Use optimistic lock based design

- Otherwise use pessimistic lock at user level
- Small probability of node failure during a transaction

- Involve small number of different nodes in a transaction

RAMCIoud Specific)
- Faster crash recovery around 1 sec
- Can yield to blocking algorithm to prevent corner cases

- A separate log on each master
7

S. Matsushita, 10/21/2013, rev. 0.63

Monday, October 21, 13 7

Note)

® CAP Theorem
* Means: Consistency, Availability, Partition-tolerance

* RAMCloud natively does not have partition tolerance, only the partition
where coordinator exists works.

e Multiphase Commit
e If we can allow waiting for node recovery, two phase commit works.

 Since the blockage is not realistic, couple of non-blocking commit
algorithm have been introduced:

e Consensus (Paxos, Raft): Always live majority hides node crash

e Multiphase Commit - prevent commit blockage
e Quorum Commit: Majority side works during partitioning
* Three phase commit - still it is not easy to detect failure mode.
e Paxos commit, etc

S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13 8

Traditional Transaction System

~

Transaction
handling for
all applications

—— (Shared)

Scalability Bottleneck

Data Storage

Data Store

HDD/SSD HDD/SSD

S. Matsushita, 10/21/2013, rev. 0.63 9

Monday, October 21, 13

Traditional Transaction: Sharding
- Distribute database into several servers for scalability

- Micro-Sharding: design SQL transaction in KVS
e Problems)
* Not easy to design field in record
* Not always possible to allocate independent shard

To Be Added]

Ref: Microsharding: Mapping Relational Workloads on Key-Value Stores,
Junichi Tatemura, Hakan Hacigumus, et. al., NEC Lab. America

S. Matsushita, 10/21/2013, rev. 0.63 10
Monday, October 21, 13 10

Traditional Transaction: Slnfonla o
gTo Be Added

e User library manages transaction - distributed
transaction monitor design

* Two phase commit

e Compare and swap at commit time
* Recovery mechanism not included

e Node failure detection

e Checkpoint based recovery for node crash
e Recovery coordinator for coordinator crash

e Conditional commit (two phase commit) only
e Delay inquiry to all relevant nodes at commit time

Ref: Sinfonia: A New Paradigm of r Building Scalable Distributed Systems,
Macros K. Aguilera (HP Lab.), et. al. , SOSP, Oct. 07

S. Matsushita, 10/21/2013, rev. 0.63 11

Monday, October 21, 13 11

Proposal: Summary

e Distributed TM (transaction monitor) for scalability
e Library based design for low latency
* Integrated crash recovery

e triggered by RAMCloud coordinator which is always
available by consensus algorithm

e Taking advantage of distributed log in RAMCloud master

e Natively all the checkpoints are available and durable
e Natural transaction API
 No need to design database field or a set of query
e without exposing:
 Node crash/recovery
e Data structure such as log, checkpoint

S. Matsushita, 10/21/2013, rev. 0.63 12
Monday, October 21, 13 12

Proposal: Components

Maintains
persistent
transaction
state for recovery (shared)
4 | N
Transaction
handling for
an application «
(Dedicated
entity for each A
%
‘.

_ Maintains
Transaction) each object’s

status and

ﬂ
speculatively

/

(@

written data

RAMCloud
Server

HDD/SSD "\ HDD/SSD
S
13

S. Matsushita, 10/21/2013, rev. 0.63

Monday, October 21, 13 13

Components - Functions

- If client application is restarted immediately (by coordinator, etc)
TM can be implemented in client I|brary/

Functions | TM: Trans. TSR :Trans. Master Coordinator
Monitor State Repo.

Normal Op. |Generate unique Store global Keep object s’ Maintain crash
Transaction ID. tatus of a status and information and
Keep track objects trangactlon temporal data, TM identifier
states. persistently return
2phase commit appropriate data
coordination.

At Recovery |Continue 2phase / TM accesses the |Respond TM to |Restart TM, or
commit (resource |transaction status |complete notice TM
unlock) commit/abort crashed node.

Possible Client library, Master node as a |Master node Coordinator

location Client node, or normal table.
Master

S. Matsushita, 10/21/2013, rev. 0.63 14
Monday, October 21, 13 14

Basic Flow: Life of a Transaction

- Define Transaction priority uniquely with Tid: Transaction ID

Client ™ Masters TSR
v__Start Tx Tid - Start R
- T OK Tid - Started
i Read Obj1 Mf M2
l okmbort OKIADbOrt poaq History
Abort by . . (in memory)
any Write Obj2 d
crash “—oxAbort . OK/Abort Speculative write
Commit object (in log)
S R/
Pha?e1 Accept? \ Tid - Committing
l Accept? OK/Abort
: Lock Obj
|Grayzone T Phase2 OKAbort NoReturnPoint v
Completing Do Commit,¥ v none Tid - NRP
commit OK/Abort = ’
\/ vy Remove Tid Info.
Time Obj unlocked
S. Matsushita, 10/21/2013, rev. 0.63 15

Monday, October 21, 13 15

o On

Detailed discussion: outline

. Client API
. Conflict Management

I. Resolution at object access with transaction priority
ii. TMid/Tid for unique global transaction order
lii. Timeout to avoid deadlock

. Commit - transition from non-blocking to blocking

(Gray zone solution)

. Recovery
I. Cleaning up by abort or completing commit
li. TM implementation
service process or library - depends on client recovery
lii. TSR implementation - in a normal table
. Implementation Control / Data structure
. Optimization

I. Callback instead of piggyback
ii. Separate key/state and data for objects in log
S. Matsushita, 10/21/2013, rev. 0.63 16

Monday, October 21, 13 16

1. Client API

e Start Transaction

e tx_start(&tid); // return new tid

* Object Access
* tx_read(tid, tableld, key, &buf, &state...);
* tx_write (tid, tableld, key, &buf, &state...);

e tx_remove(), tx_multi-...(),
We can make tx_read, tx_write by default using tid=0
for non transactional operation.

 Commit Transaction
e tx_commit(tid, &state);
* tx_abort(tid, &state);

e Status

otx_status(tid, &state); // return current transaction state

17
S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13 17

2. Truth Table of Conflicts Management

- Older transaction id wins at data access

- Provides only shared reads: can detect Read/Read conflict
with dummy write: Rd (Obj1) with Wr(Dummy1)

Tid 1 (Older) < Tid 2 (Younger)

operation mode |Tid 1 |Tid 2 winner
=I;nodel read |read both
mo@ Not Supported ——read TL"
both modes read |write Tid 1
both modes write |read Tid 1
both modes write |write Tidl

S. Matsushita, 10/21/2013, rev. 0.63

Monday, October 21, 13

18

Tid, TMid

- TMid is given by coordinator at TM startup

- Tid
e Define Tid = [TMid, TM-localtime] at a transaction
generation // note: [a, b] = concatenation of ‘a’ and ‘b’
e Compare TMid only when local time is the same
* Preciseness is not needed, because Tid is just a priority
to decide winner transaction at object access time.

19
S. Matsushita, 10/21/2013, rev. 0.63

Monday, October 21, 13

19

Conflict management at object access

- Compares Tid in Master. Abort newer Tid immediately.

_ (Traditional technique in DBMS)
- Timeout to avoid deadlock by

incorrect code or client crash, e
which freezes the oldest transaction. : Notation) f

: S: Started
: A: Aborted
time . U: Uncommitted :
(Speculatively running)
Tid2 S -~ > U e
(older) rd A
@ If time_difference(Tid3, Tid2) > Tout
: Then
(-ggw?ar) S abort Leaves both alive and decides
winer at commit time.
wr A
Else
object A: Abort transaction with newer Tid
Read by Tid2 20

S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13

20

Issues - False abort/Status piggyback

e False Abort: the conflict which

aborted Tid3 disappears

when Tid2 is aborted later.
e Chain reaction of false abor

t may occur

e Leave it because provabiliw
e Abort notified as status return
* Tid2 is not aborted by Tid1-
in the future (Needs callback

 of false abort is small.

(piggyback).
write, but by some request

to optimize)

Tid time
S >
1 (oldest) — | B U
Reason of conflict disappears- -~
2 S A A > %
rd A % rd B abort
3 (newest) S 1 abort
wr A
\ 4
object A object B
2 State: Read by Tid2 21

State: Read by Tid

S. Matsushita, 10/21/2013, rev. 0.63

21

Monday, October 21, 13

3. Commit - Two phase commit

* TM coordinates commit operation
e Save durable state in TSR
e Committing: unlock object by abort (optimization)
* NRP: no-return-point for durable transition to commit

time ,
TM Phase1 Phase 2
Can commit? If all yes S>>
(commit 3 X% 77 4-» A
coordinator) .} W '7 : .',:'
Check then gray Commit and
Masters i1\ Lock i zone %, Unlock i
(commitslaves) & ;& ” L > !Delete
; y
TSR - Committing N

(Transaction state repository)

Behavior at | Abort

Tx related nodes crash
S. Matsushita, 10/21/2013, rev. 0.63

TM Waits and Retries (Blocking) 292

Monday, October 21, 13

22

3. Commit - Racing conditions

* Racing condition: Note that_abort and commit are unilateral

® After NRP is written, TM start aborting in Phase2 due to (1) ‘OK’ loss or (2)
relevant node crash
* Then TM crashes. The recovered TM reads NRP then starts commit.
* (1) cannot be distinguished from (4) lost NRP req
e Solution
* NRP is idempotent: TM retries (4) and waits (1)
e If TM failed retry, TM reads TSR after enough timeout to decide behavior.
e After initiating (4), TM waits any relevant node recovery (blocking).

_ Conflict
time gray zone /,
Phase 1 Crash &
TM —, A P“hase2 Recoverﬂ :
NRP write SR (3) '.

". M %% Avort :
Masters = () foon S > | % Gommit

(2): Some master ¥ >

OK crash Read

* [}
TSR | | NRP

23

S. Matsushita, 10/21/2013, rev. 0.63

Monday, October 21, 13 23

3. Commit - State Machine

TM (coordinating) Masters

Can commit?
no

Can commit?
yes

Com. Request
Can commit?

NRP write /

no ack ack

NRP write
(retry)

\
=

commit
ack ack

commit

v legend)
@ received msg
reply

Ref: A Formal Model of Crash Recovery in a Distributed System, Dale Skeen
and Michael Stonebraker, 1983

™
recovery

S. Matsushita, 10/21/2013, rev. 0.63 24
Monday, October 21, 13 24

4. Crash Recovery - Clean up

 TM crash
e completes commit/abort
e Commits transaction if NRP is found. Otherwise
abort transaction.
* Fast restart required because other clients are
blocked by accessing the locked objects
e Server crash
* Reconstruct hash and object status in memory from
log
e TSR crash
* Recover status of transactions

25

S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13 25

5. Implementation Alternatives

* TM - item 1 seems simplest and good for performance.
¥ 1. In client library such as crtO.

* Pros) Application (Tire2, Tire3) needs to be recovered to continue
web service anyway
» Cons) Need client recovery mechanism by coordinator

2. In a master
* Need a location decision and lookup by coordinator

® Cons) Extra access latency and network traffic by additional hop in
data access.

3. In a separate process/thread in a client node
* Need another recovery mechanism
® Cons) Extra latency by process communication and dispatch
e TSR
* In a master with defining a table and save transaction
state as a normal object.

26

S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13 26

5. Implementation Proposal

* TM as client library
e Coordinator detects client failure and restarts

* Naming issue: ‘It would better to call an application
promote to server by requesting recovery to
coordinator’.

e TMid given by coordinator
e Generate: Tid = [TMid, TM’s local time]
* Timed loosely correct TM’s local time

[a, b] denotes concatenation

* TSR as a specific table
* (Key, Value) = (Tid, TransactionState)
* How to find active transactions associated to a TMid?
* Range query : [TMid, time min] to [TMid, time max]
e Other object : (TMid, list_of Tids)

27

S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13 27

5. Implement TM in Client Library

* CrtO contacts coordinator to get TMid and register
application info. for recovery.
e User can modify transaction algorithm by modifying library.

time ,
App. App (server) X ., S0
| y crash App (server) X
Lib. —>Crt0 Tido= rdwr i >
starth TX] ' i
(TM) Pr omote A A _,Recoxer ve%lt)
i ' to server : ™ A :
Id = : " :
TMalloc: E : free(TMid)
TSR y ¥ .,
. Clean.Up '
Master. ¥ Y SN
¥ crash ¥
Coord. detection >
28

S. Matsushita, 10/21/2013, rev. 0.63

Monday, October 21, 13

28

5. TM Data Structure

' To Be Done. |

|

29

S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13 29

Master Data Structure

' To Be Done. |

|

30

S. Matsushita, 10/21/2013, rev. 0.63
Monday, October 21, 13 30

