
S. Matsushita, 10/25/2013, rev. 0.64
back

Proposal of Transaction
on RAMCloud

rev0.64
25 Oct. 2013

Satoshi Matsushita

1

r0.64 Mod

1Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Objectives

• Introduce ”Transaction” to RAMCloud
• What is ”Transaction” ?
• Wikipedia ‘Database Transaction’:
• To provide reliable units of work that allow correct

recovery from failures and keep a database consistent
even in cases of system failure, when execution stops (completely
or partially) and many operations upon a database remain
uncompleted, with unclear status.

• To provide isolation between programs accessing a database
concurrently. If this isolation is not provided, the program's
outcome are possibly erroneous.

• User declares a partial sequence of data (object) access
as “a Transaction”, to which RAMCloud provides
‘Database Transaction’ feature.

2

r0.63 Mod

2Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Characteristics of Transaction
1. Duration varies from short to long: 0.1ms to 100ms
2. Very small chance of conflict to other transactions
3. Too many conflicts are data/control design issue

3

Example Duration Chance of Conflict
Analytic (Data analysis) min. to hours none after start
Ticket reservation, auction to a few sec small
Banking to a few sec small, at money

transfer
Online shopping to a few sec small, can split to

many independent
transactionsStock trading 1 to 100ms small or medium

SNS 100 to 1000 ms small
Other web services 100 to 1000 ms small

3Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Issues in Parallel Execution
• Resource access conflict occurs in parallel execution
• Requirement to avoid the problem

• ACID: (atomicity, consistency, isolation, durability)
• CAP Theorem: (Can relax partition tolerance) - discuss later

4

Ideal Parallel Execution)

Time

job 0 job 1 job 2

Reality)

Time

job 0 job 1 job 2

Dirty read
(access
conflicts)
may lead
wrong results

Activity
with ACID

r0.62 Mod

4Friday, October 25, 13

http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)

S. Matsushita, 10/25/2013, rev. 0.64
back

Conflict Solutions

5

Pessimistic Lock)

Time

job 0 job 1 job 2

Pros & Cons)
- Lower parallelism with giant locks
- Dead lock prone with fine locks
- Need releasing lock with node crash

Optimistic Lock)

Time

job 0 job 1 job 2
lock

unlock

Conflict
Detected

Cancel

Re-execute

Pros & Cons)
- Need conflict detection logic
- Lower Performance loss by frequent
conflicts
- Alternatives in abort detection

Text

Commit

Commit

Commit

Abort

ACID
writeback

5Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Optimistic Lock: General Solution

6
Time

job 0 job 1Obj1

• Conflict detection of true dependencies: RAW (Read after Write)

• Renaming false dependencies : WAR, WAR
- Common technique in parallel execution such as
 Speculative MT, Transactional Mem., RDBM

Obj2
0/Rd1
0/Rd2

0/Wr1
Obj1’

0/Rd1

Obj1’’0/Wr1

0/Commit
WriteBack

 local buffering, aka.
“Memory Renaming”

1/Rd1

1/Rd2

1/Wr2
Obj2’

1/Abort

Obj1

Possible
early conflict
detection

Obj2

Drop

Perpetualize atomically

r0.62 Mod

6Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Assumptions and Strategies
Application Specific)
- Transaction life varies between short to long

- Try early conflict detection avoiding livelock
- Small probability of conflicts

- Use optimistic lock based design
- Otherwise create pessimistic lock at user level

- Well designed application shares appropriate amounts of
data in a transaction
- Involve small number of nodes to reduce probability

of relevant node crash for a transaction
RAMCloud Specific)
- Faster crash recovery around 1 sec

- Can yield to blocking algorithm without corner cases
- A separate log on each master - advantage of scalability

7

r0.64 Mod

7Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Note)
• CAP Theorem

• Means: Consistency, Availability, Partition-tolerance
• RAMCloud natively does not have partition tolerance, only the partition

where coordinator exists works.

• Multiphase Commit
• If we can allow waiting for node recovery, two phase commit works.
• Since the blockage is not realistic, couple of non-blocking commit

algorithm have been introduced:
• Consensus (Paxos, Raft): Always live majority hides node crash
• Multiphase Commit - prevent commit blockage

• Quorum Commit: Majority side works during partitioning
• Three phase commit - still it is not easy to detect failure mode.
• Paxos commit, etc

8

8Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Traditional Transaction System

9

Application1

Active Standby

HDD/SSD HDD/SSD

Data Store

Transaction
Monitor
(TM)

Relatively Slow
Data Storage

Transaction
handling for
all applications

Application n

Scalability Bottleneck

r0.63 Mod

Shared Transaction Monitor
Complex

Write transaction /
backup / recovery
with primitives in
SQL.

9Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Traditional Transaction: Sharding

10

To Be Added

- Distribute database into several servers for scalability

- Micro-Sharding: implement SQL’s transaction on KVS by
confining a transaction related fields in a single row.

• Problems)
• Need a good design of fields in record
• Not always possible to allocate independent sharding

Ref: Microsharding: Mapping Relational Workloads on Key-Value Stores,
Junichi Tatemura, Hakan Hacigumus, et. al., NEC Lab. America

r0.64 Mod

10Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Traditional Transaction: Sinfonia

11

• Distributed design: user library manages transaction -
distributed transaction monitor

• Light: memory based, so that fail detection and abort
• Memory node recovery with redo-log

• Abundant APIs
• Static: pack compare/write data in an operation

• Two phase commit
• Compare and conditional store at commit time

• Trans. coordinator recovery mechanism not included
• Node failure detection
• Recovery coordinator for coordinator crash

To Be Reviewed

Ref: Sinfonia: A New Paradigm of r Building Scalable Distributed Systems,
Macros K. Aguilera (HP Lab.), et. al. , SOSP, Oct. 07

r0.64 Mod

11Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Proposal: Key Idea

12

1. Better scalability
• Distributed TM(Transaction Manager) with taking advantage of distributed

log in masters.
• No replicated data enables distributed conflict detection in masters

2. Better performance for wide duration range of transactions
• Implementing TM in library for low latency
• Earier conflict detection to prune shared information and reduce retry

overhead
3. Integrated and automated crash recovery

• Triggered by RAMCloud coordinator which is always available by consensus
algorithm

4. Natural transaction API
• Dynamic: enclose a part of native code with StartTx /{Commit,Abort}

primitive - needs bad code safety
• Database schema in RAMCloud with flexible and minimum set of primitives

for smaller users’ efforts
• Not exposing internal structure: recovery, log data structure/checkpoint

• Enable system side tuning adapting to new hardware / algorithm

r0.64 Mod

12Friday, October 25, 13

Transaction
State Repository

AP3AP3

S. Matsushita, 10/25/2013, rev. 0.64
back

Proposal: Distributed Components

13

Master #1 Master #M

Backup #1 Backup #M

HDD/SSD

RAMCloud
Server

Transaction
Monitor (TM1)
as a library

Transaction
State Repository
(TSR)

Preserve
durable
commit status
for recovery
(distributed)

Detects conflict
on each object.

Holds temporal
object status
and data

Coordinate
transaction
processing for
each application

Application 1
(Can fork after
TM creation)

Application 1
(Can fork after
TM creation)

TM2 TM3

AP2 AP3

M #i

B #i

Coordinator

Detect
crash
and
coordinate
recovery

13Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Components - Functions

14

Functions TM:Trans.
Monitor

TSR:Trans.
State Repo.

Master Coordinator

Normal Op. Generate unique
Transaction ID.
Coordinate
transactional
operation.

Maintain
persistent status
during commit
operation.

Maintain
objects’ status
and temporal
data, and return
appropriate data

Define TM
identifier and
watch entity
crash.

At Recovery Continue 2phase
commit (resource
unlock)

Provide
transaction status
to TM

Complete
commit/abort
triggered by TM

Start TM to run
completion
helper

Location Client library A table in
masters

Master Coordinator

- An application needs to be immediately restarted by
coordinator after crash to run lock cleanup in completion
helper of commit/abort in the application library.

14Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Basic Flow: Life of a Transaction

15

ClientTime TM TSRMasters
Start Tx

Read Obj1

Read History
(in memory)Write Obj2

Speculative
write object
(in memory)

OK/Abort

OK/Abort

Key words) Conflict detection at object access, 2 phase commit, volatile to non-volatile

M1 M2

Commit
Phase1 Accept?

Accept? Locked tmp Obj (in Log)

NoReturnPoint (in Log)Phase2

Do Commit

Remove Tid Info.DoneOK/Abort

Obj unlocked

OK/Abort

OK/Abort

Abort
by any
crash

Gray Zone

Completing
commit

r0.64 Mod

Tid

OK/Abort

OK/Abort

Ack

Volatile
non-blocking

non-volatile, blocking

15Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Outline of Detailed Discussion

16

1. Client API
2. State transition of transaction and objects
3. Conflict Management

i. Resolution at object access with transaction priority
ii. TMid/Tid for unique global transaction order
iii. Timeout to avoid deadlock

4. Commit - transition from non-blocking to blocking
5. Recovery

i. Cleaning up by abort or completing commit
ii. TM implementation
 service process or library - depends on client recovery
iii. TSR implementation - in a normal table

6. Implementation Control / Data structure
7. Optimization

i. Callback instead of piggyback
ii. Separate key/state and data for objects in log

r0.64 Mod

16Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

1. Client API - Minimum
• Start Transaction

• tx_start(&tid); // return new tid
• Object Access

• tx_read(tid, tableId, key, &buf, &state...);
• tx_write (tid, tableId, key, &buf, &state...);
• tx_remove(), tx_multi-...(),
‣ Can define tid=0 as non-transactional operation
‣ Still need compare & swap for multi-threading app?

• Commit & Status of Transaction
• tx_commit(tid, &state);
• tx_abort(tid, &state);
• tx_status(tid, &state);

• Issues) 1. Implicit TM startup? 2. thread ready?
3. User’s responsibility for multi-process client.

17
17Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

2. Transaction States
• Assume a transaction accesses single object ‘A’ for simplicity

18

r0.64 Add

Volatile (Aborted by any crash) Durable

tx_start tx_commit

active
Tx state: Speculative Committing NRP

done

or Aborting

Data in Master
In Memory (Volatile)

In Log (Durable)

tx_read(A) tx_write(A)

 Obj: version = i Obj : ver = i +3

read info.

tx_read(A)

write info/data i+1

write info overrides read

Obj i+2 tmp
Locked

 Obj: version = iHash Obj : ver = i +3

Locked
v=i,
 i+2

All lock required
for NRP transition

T i+2
 tmp

Time

Detail

18Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

2. New Object Type
• How to declare locked object in log?

1. Define version grouping, let status override other groups
2. Define multi-data object containing both v=i, i+2
 Note) 2 is simple but max object size becomes multiple

• Grouping object by group field
• Compare version within the same group

• Define temporal object as group=tmp
• Object(key, ver, group=tmp, tid, status=locked, blob)

 Tomb(key, ver+1, group=tmp, tid)

19

r0.64 Add

 Obj: version = i, blob1
 Obj : v=i+3, b2

 Obj v=i+2, tmp, Locked, b2 Tomb, v=i+3, tmpSpeculative
Transactional value

Committed value

object overwritten

if overwritten

Status overrides : Locked

 Obj : v=i, blob1
if not overwritten

19Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

3. Conflict management at object access

20

Tid2
time

Start

Start

Else
 Abort newer transaction at data access

Alive

object A

wr A

rd A

- Compares Tid in Master. Abort newer Tid immediately.

If time_difference(Tid3, Tid2) > Timeout
Then
 Leaves both alive and decides winner at commit

Tid3

(older)

(newer)
Aborted

- Timeout to avoid deadlock by incorrect client code which
prevents the completion of the oldest transaction.

20Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

2. Truth Table of Conflicts Management

21

operation mode Tid 1 Tid 2 winner
mode1
mode2
both modes
both modes
both modes

read read both
read read Tid 1
read write Tid 1
write read Tid 1
write write Tid 1

Tid 1 (Older) < Tid 2 (Younger)

- Older transaction id wins at data access
- Provides only shared reads: can detect Read/Read conflict
with dummy write: Rd (Obj1) with Wr(Dummy1)

 Not Supported

21Friday, October 25, 13

MastersMasters
S. Matsushita, 10/25/2013, rev. 0.64

back

Tid, TMid

22

- TMid (TM identifier) is given by coordinator at TM startup
- Tid (Transaction identifier)

• Define Tid = [TMid, TM-localtime] at the transaction
creation // note: [a, b] = concatenation of ‘a’ and ‘b’
• Compare TMid only when local time is the same
• No need for timer accuracy because Tid is just a priority
to decide a winner transaction at object access time.

r0.64 Mod

Coordinator TM: Transaction Monitor

TSR

1. start
TM

2. promote
to TMsever

3. TMid

Masters

i. StartTx

Tid p = [TMid, localtime]

iii. Rd/Wr
 (p,obj)

ii. Tid p

v. commit p

iv. Rd/Wr (p,obj)

vi. persist
commit
status of Tid4. liveness

check/recovery

Application

22Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Conflict management at object access

23

Tid2
(older)

Time
Tx_Start

Tx_Start

Alive (Speculative)

object A

wr A’ to A

rd A

- Compares Tid in Master. Abort newer Tid immediately

If time_difference(Tid3, Tid2) > Timeout
Then
 Leaves both alive and decides winer at commit
Else
 Abort transaction with newer Tid

Tid3
(newer)

Abort

- Timeout to avoid deadlock by non-terminating oldest
transaction due to incorrect code or client crash, etc.

Note) time difference is directly calculated with Tid which contains localtime

23Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Issues - False abort/Status piggyback

24

Tid1
(oldest)

Time

Start

Start

Alive

object A

wr A

rd A

• False abort: the conflict which aborted Tid3 disappears
by later Tid2 abort

• May cause chain reaction of false abort
• Leave it because provability of false abort is small

• Abort notified in status return (piggyback)
• Tid2 is not aborted by wr B of Tid1, until status return
of another future request (Needs callback to optimize)

Start

object B

rd B

wrBConflict reason disappears

Abort

AbortTid2

Tid3
(newest)

24Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

3. Commit - Two phase commit
• TM coordinates commit operation

• Need to unlock objects in masters in phase2
• Save durable status in TSR

• NRP: no-return-point for durable transition to commit

TM
(coordinating
 commit)

time

Masters
(commit slaves)

Can commit ?

Check and
 Lock Obj’s

If all yes

TSR
(Transaction state repository)

Commit and
 Unlock Obj’s

Delete

NRP

Phase1 Phase 2

Behavior at
Tx related nodes crash

Abort Commit (Durable)

gray
zone

25

no info. no info.

r0.64 Mod

Do commit !

25Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

3. Commit - Racing conditions
• Racing condition: Note that abort and commit are unilateral

• Non-blocking behavior) After NRP is written, TM start aborting in Phase2 due
to (1) lost ack or (2) Tx relevant node crash
• Then (3) TM crashes, and recovered TM reads NRP then starts commit
• Cannot distinguish (4) lost request: (no NRP written) from (1) : (NRP written)

• Solution: Transferring to Blocking
• NRP is idempotent: TM retries (4) and waits (1)
• TM reads TSR to decide behavior after retry error of (4)(1) or after TM crash(3)
• Once (4) initiated, TM waits recovery of any relevant node crash (2)

TM

time

Masters

TSR

Commit

NRP

Phase 2

gray zone

26

NRP write

OK

(3) Crash &
 Recover

Abort

Read

(4) lost
 request

(1)
lost
ack

(2) Some crash

Inconsistent

Phase 1

r0.63 Mod

26Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

3. Commit - State Machine with Failure

TM (coordinating)

Ref: A Formal Model of Crash Recovery in a Distributed System, Dale Skeen
and Michael Stonebraker, 1983

27

Masters
q1 q2

w1

abort1

abort2

commit1

p2

commit2

n1

Can commit?
 no

legend)
received msg

reply

Can commit?
 yes

abort
ack

commit
ack

Com. Request
Can commit?

no
-

yes
abort

all yes
NRP write

chk
NRP NRP ack

commit

timeout
NRP write

(some retry)

NRP
commit

retry fail
-

no NRP
abort

TM
recovery

r0.64 Mod

timeout

Can restore to
previous state
by Log replay.

chk NRP

no ack
commit

no ack
abort

Yellow is non-blocking, Orange is blocking.

* : client handles
 retry error

**

*

27Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

4. Crash Recovery - Clean up

28

• TM crash
• Completes commit/abort transactions for the TM

• Commits transactions whose NRPs are found in TSR
• Otherwise aborts transactions which belong to the
TMid
• Fast cleanup required to prevent other clients’
blockage when they access locked objects

• Server crash
• Reconstruct hash and object status in memory from log

• TSR crash
• Recover commit status of transactions

r0.64 Mod

28Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

5. Implementation Alternatives

29

• TM - item 1 seems simplest and good for performance.
1. In client library such as crt0 (C/C++ startup runtime)

• Pros) Application (Tire2, Tire3) needs to be recovered to continue web
service anyway
• Cons) Need client recovery mechanism by coordinator

2. In a master
• Need TM locator
• Cons) Extra access latency and network traffic by additional hop for
data access

3. In a separate process/thread in a client node
• Need recovery mechanism
• Cons) Extra latency by process communication and dispatch

• TSR
• In a master with defining a table and save transaction
state as a normal object

r0.64 Mod

29Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

5. Implementation of TM/TSR

30

• Implement TM in client library
• Coordinator detects client failure and restarts
• Naming issue: ‘Once the liveness check/recovery is
managed by coordinator, it should be called ‘server’ -
not a client anymore’.
• TMid given by coordinator, then TM locally generates
 Tid = [TMid, TM’s local time] at tx_start request.

• TSR as a specific table
• List of status: (Key, Value) =
 (TMid, list_of{ (Tid, TransactionStatus) })

• Only one TransactionStatus so far: NRP
• Can find both Tid’s status and Tids with given TMid
• Simple enough since at most one commit-phase2
is ongoing for a TM in normal condition

[a, b] denotes concatenation

r0.64 Mod

30Friday, October 25, 13

restarted App X

S. Matsushita, 10/25/2013, rev. 0.64
back

5. Implement TM in Client Library

31

• Crt0 contacts coordinator to get TMid and register
application for its fail detection/recovery
• Application state is saved/recovered with ACID transaction
• User may modify transaction algorithm by modifying library

Client App.

time

Library
(TM)

Coord.

Crt0

Register
and
get TMid

TSR

Master.

exitTid0 =
startTx

rd/wr
Tx

free(TMid)

crash

crash
detection

restart

Restarted TM

Clean Up

App (server) X

Promote
to server

r0.63 Mod

 (may on different node)

31Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

5. TM Data Structure and Crash Control

Active Tid List

Tid=[M, T] Status 2 4 7
Master ID List

• All in-memory data:
• Tid, Status: Speculative/Committing/NRP/Aborting, etc
• Master ID list: masters accessed by each transaction

• After TM crash
• (Tid, Status) recovered from NRP in TSR

• No need to recover data if no NRP found
• Broadcast ‘Commit’ for NRP / Abort otherwise with TMid
to complete commit/abort of Tx coordinated by the TM

• No optimization needed)
• Small TM crash probability
• Small size of request payload

r0.64 Add

32
32Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

5. TM Control

Status for each Tid: Speculative/Committing/NRP/Aborting

To Be Done.

33Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Master Data Structure

34

• Volatile data lost by crash: hash, array -- any improvement with in-memory log?
• Non-volatile data: locked object, committed object in log

Key hash

2

1

5

key1,
blob10

key2,
blob20

key5,
blob50

T1 = [1, 60 ms]

T2 = [1, 85 ms]

T5 = [3, 85 ms]

Tid Hash

committed committed

r0.64 Add

Simple example

Access Status

write key2 (*TO)

write key2 (*TO) read key1

read key5

Write Blob

T1, key2, blob21

T2, key2, blob22

TO) Timeout, where conflict detection is delayed at commit

In memory)

In log)

committed

Backed Up

34Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Master Data Structure: at Commit

35

Key hash

2

1

5

key1,
blob10

key2,
blob20

key5,
blob50

T1 = [1, 60 ms]

T2 = [1, 85 ms]

T5 = [3, 85 ms]

Tid Hash

committed committed

r0.64 Add

Simple example

Access Status

locked, key2

aborting

read key5

Write Blob

T1, key2, blob21
Locked

TO) Timeout, where conflict detection is delayed at commit

In memory)

In log)

committed

Backed Up

35Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

Master Control

36

To Be Done.

36Friday, October 25, 13

S. Matsushita, 10/25/2013, rev. 0.64
back

TSR Data Structure

37

Table

• TSR as a specific table:
 (Key, Value) = (TMid, list_of{ (Tid, TransactionStatus) })

• Distribute access by a hash of the Key
• Durable and available

tablet 0 tablet 1 tablet n

Network

Master 0 Master 1 Master n

TM 0 TM i TM j

r0.64 Add

37Friday, October 25, 13

