
S. Matsushita, 10/24/2013, rev. 0.64

Proposal of Transaction
on RAMCloud

rev0.64
24 Oct. 2013

Satoshi Matsushita

1

r0.64 Mod

1Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Objectives

• Introduce ”Transaction” to RAMCloud
• What is ”Transaction” ?
• Wikipedia ‘Database Transaction’:
• To provide reliable units of work that allow correct

recovery from failures and keep a database consistent
even in cases of system failure, when execution stops (completely
or partially) and many operations upon a database remain
uncompleted, with unclear status.

• To provide isolation between programs accessing a database
concurrently. If this isolation is not provided, the program's
outcome are possibly erroneous.

• User declares a partial sequence of data (object) access
as “a Transaction”, to which RAMCloud provides
‘Database Transaction’ feature.

2

r0.63 Mod

2Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Characteristics of Transaction
1. Duration varies from short to long: 0.1ms to 100ms
2. Very small chance of conflict to other transactions
3. Too many conflicts are data/control design issue

3

Example Duration Chance of Conflict
Analytic (Data analysis) min. to hours none after start
Ticket or seat reservation to a few sec small
Banking to a few sec small, at money

transfer
Online shopping to a few sec small, can split to

many independent
transactionsStock trading 1 to 100ms small or medium

SNS 100 to 1000 ms small
Other web services 100 to 1000 ms small

3Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Issues in Parallel Execution
• Resource access conflict occurs in parallel execution
• Requirement to avoid the problem

• ACID: (atomicity, consistency, isolation, durability)
• CAP Theorem: (Can relax partition tolerance) - discuss later

4

Ideal Parallel Execution)

Time

job 0 job 1 job 2

Reality)

Time

job 0 job 1 job 2

Dirty read
(access
conflicts)
may lead
wrong results

Activity
with ACID

r0.62 Mod

4Thursday, October 24, 13

http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)

S. Matsushita, 10/24/2013, rev. 0.64

Conflict Solutions

5

Pessimistic Lock)

Time

job 0 job 1 job 2

Pros & Cons)
- Lower parallelism with giant locks
- Dead lock prone with fine locks
- Need releasing lock with node crash

Optimistic Lock)

Time

job 0 job 1 job 2
lock

unlock

Conflict
Detected

Cancel

Re-execute

Pros & Cons)
- Need conflict detection logic
- Lower Performance loss by frequent
conflicts
- Alternatives in abort detection

Text

Commit

Commit

Commit

Abort

ACID
writeback

5Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Optimistic Lock: General Solution

6
Time

job 0 job 1Obj1

• Conflict detection of true dependencies: RAW (Read after Write)

• Renaming false dependencies : WAR, WAR
- Common technique in parallel execution such as
 Speculative MT, Transactional Mem., RDBM

Obj2
0/Rd1
0/Rd2

0/Wr1
Obj1’

0/Rd1

Obj1’’0/Wr1

0/Commit
WriteBack

 local buffering, aka.
“Memory Renaming”

1/Rd1

1/Rd2

1/Wr2
Obj2’

1/Abort

Obj1

Possible
early conflict
detection

Obj2

Drop

Perpetualize atomically

r0.62 Mod

6Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Assumptions and Strategies
Application Specific)
- Transaction life varies between short to long

- Try early conflict detection avoiding livelock
- Small probability of conflicts

- Use optimistic lock based design
- Otherwise create pessimistic lock at user level

- Well designed application shares appropriate amounts of
data in a transaction
- Involve small number of nodes to reduce probability

of relevant node crash for a transaction
RAMCloud Specific)
- Faster crash recovery around 1 sec

- Can yield to blocking algorithm without corner cases
- A separate log on each master - advantage of scalability

7

r0.64 Mod

7Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Note)
• CAP Theorem

• Means: Consistency, Availability, Partition-tolerance
• RAMCloud natively does not have partition tolerance, only the partition

where coordinator exists works.

• Multiphase Commit
• If we can allow waiting for node recovery, two phase commit works.
• Since the blockage is not realistic, couple of non-blocking commit

algorithm have been introduced:
• Consensus (Paxos, Raft): Always live majority hides node crash
• Multiphase Commit - prevent commit blockage

• Quorum Commit: Majority side works during partitioning
• Three phase commit - still it is not easy to detect failure mode.
• Paxos commit, etc

8

8Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Traditional Transaction System

9

Application1

Active Standby

HDD/SSD HDD/SSD

Data Store

Transaction
Monitor
(TM)

Relatively Slow
Data Storage

Transaction
handling for
all applications

Application n

Scalability Bottleneck

r0.63 Mod

Shared Transaction Monitor
Complex

Write transaction /
backup / recovery
with primitives in
SQL.

9Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Traditional Transaction: Sharding

10

To Be Added

- Distribute database into several servers for scalability

- Micro-Sharding: implement SQL’s transaction on KVS by
confining a transaction related fields in a single row.

• Problems)
• Need a good design of fields in record
• Not always possible to allocate independent sharding

Ref: Microsharding: Mapping Relational Workloads on Key-Value Stores,
Junichi Tatemura, Hakan Hacigumus, et. al., NEC Lab. America

r0.64 Mod

10Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Traditional Transaction: Sinfonia

11

• Distributed design: user library manages transaction -
distributed transaction monitor

• Light: memory based, so that fail detection and abort
• Memory node recovery with redo-log

• Abundant APIs
• Static: pack compare/write data in an operation

• Two phase commit
• Compare and conditional store at commit time

• Trans. coordinator recovery mechanism not included
• Node failure detection
• Recovery coordinator for coordinator crash

To Be Reviewed

Ref: Sinfonia: A New Paradigm of r Building Scalable Distributed Systems,
Macros K. Aguilera (HP Lab.), et. al. , SOSP, Oct. 07

r0.64 Mod

11Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Proposal: Key Idea

12

1. Better scalability
• Distributed TM(Transaction Manager) with taking advantage of distributed

log in masters.
• No replicated data enables distributed conflict detection in masters

2. Better performance for wide duration range of transactions
• Implementing TM in library for low latency
• Earier conflict detection to prune shared information and reduce retry

overhead
3. Integrated and automated crash recovery

• Triggered by RAMCloud coordinator which is always available by consensus
algorithm

4. Natural transaction API
• Dynamic: enclose a part of native code with StartTx /{Commit,Abort}

primitive - needs bad code safety
• Database schema in RAMCloud with flexible and minimum set of primitives

for smaller users’ efforts
• Not exposing: recovery, log data structure/checkpoint

• Enable system side tuning adapting to new hardware / algorithm

r0.64 Mod

12Thursday, October 24, 13

Transaction
State Repository

AP3AP3

S. Matsushita, 10/24/2013, rev. 0.64

Proposal: Distributed Components

13

Master #1 Master #M

Backup #1 Backup #M

HDD/SSD

RAMCloud
Server

Transaction
Monitor (TM1)
as a library

Transaction
State Repository
(TSR)

Preserve
durable
commit status
for recovery
(distributed)

Detects conflict
on each object.

Holds temporal
object status
and data

Coordinate
transaction
processing for
each application

Application 1
(Can fork after
TM creation)

Application 1
(Can fork after
TM creation)

TM2 TM3

AP2 AP3

M #i

B #i

Coordinator

Detect
crash
and
coordinate
recovery

13Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Components - Functions

14

Functions TM:Trans.
Monitor

TSR:Trans.
State Repo.

Master Coordinator

Normal Op. Generate unique
Transaction ID.
Coordinate
transactional
operation.

Maintain
persistent status
during commit
operation.

Maintain
objects’ status
and temporal
data, and return
appropriate data

Define TM
identifier and
watch entity
crash.

At Recovery Continue 2phase
commit (resource
unlock)

Provide
transaction status
to TM

Complete
commit/abort
triggered by TM

Start TM to run
completion
helper

Location Client library A table in
masters

Master Coordinator

- An application needs to be immediately restarted by
coordinator after crash to run lock cleanup in completion
helper of commit/abort in the application library.

14Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Basic Flow: Life of a Transaction

15

ClientTime TM TSRMasters
Start Tx

Read Obj1

Read History
(in memory)Write Obj2

Speculative
write object
(in memory)

OK/Abort

OK/Abort

Key words) Conflict detection at object access, 2 phase commit, volatile to non-volatile

M1 M2

Commit
Phase1 Accept?

Accept? Locked tmp Obj (in Log)

NoReturnPoint (in Log)Phase2

Do Commit

Remove Tid Info.DoneOK/Abort

Obj unlocked

OK/Abort

OK/Abort

Abort
by any
crash

Gray Zone

Completing
commit

r0.64 Mod

Tid

OK/Abort

OK/Abort

Ack

Volatile
non-blocking

non-volatile, blocking

15Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Outline of Detailed Discussion

16

1. Client API
2. State transition of transaction and objects
3. Conflict Management

i. Resolution at object access with transaction priority
ii. TMid/Tid for unique global transaction order
iii. Timeout to avoid deadlock

4. Commit - transition from non-blocking to blocking
5. Recovery

i. Cleaning up by abort or completing commit
ii. TM implementation
 service process or library - depends on client recovery
iii. TSR implementation - in a normal table

6. Implementation Control / Data structure
7. Optimization

i. Callback instead of piggyback
ii. Separate key/state and data for objects in log

r0.64 Mod

16Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

1. Client API - Simple,Minimum
• Start Transaction

• tx_start(&tid); // return new tid
• Object Access

• tx_read(tid, tableId, key, &buf, &state...);
• tx_write (tid, tableId, key, &buf, &state...);
• tx_remove(), tx_multi-...(),
‣ Can define tid=0 as non-transactional operation
‣ Still need compare & swap for multi-threading app?

• Commit & Status of Transaction
• tx_commit(tid, &state);
• tx_abort(tid, &state);
• tx_status(tid, &state);

17

17Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

2. Transaction States
• Assume a transaction accesses single object ‘A’ for simplicity

18

r0.64 Add

Volatile (Aborted by any crash) Durable

tx_start tx_commit

active
Tx state: Speculative Committing NRP

done

or Aborting

Data in Master
In Memory (Volatile)

In Log (Durable)

tx_read(A) tx_write(A)

 Obj: version = i Obj : ver = i +3

read info.

tx_read(A)

write info/data i+1

write info overrides read

Obj i+2 tmp
Locked

 Obj: version = iHash Obj : ver = i +3

Locked
v=i,
 i+2

All lock required
for NRP transition

T i+2
 tmp

Time

Detail

18Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

2. New Object Type
• How to declare locked object in log?

1. Define version grouping, let status override other groups
2. Define multi-data object containing both v=i, i+2
 Note) 2 is simple but max object size becomes multiple

• Grouping object by group field
• Compare version within the same group

• Define temporal object as group=tmp
• Object(key, ver, group=tmp, tid, status=locked, blob)

 Tomb(key, ver+1, group=tmp, tid)

19

r0.64 Add

 Obj: version = i, blob1
 Obj : v=i+3, b2

 Obj v=i+2, tmp, Locked, b2 Tomb, v=i+3, tmpSpeculative
Transactional value

Committed value

object overwritten

if overwritten

Status overrides : Locked

 Obj : v=i, blob1
if not overwritten

19Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

3. Conflict management at object access

20

Tid2
time

Start

Start

Else
 Abort newer transaction at data access

Alive

object A

wr A

rd A

- Compares Tid in Master. Abort newer Tid immediately.

If time_difference(Tid3, Tid2) > Timeout
Then
 Leaves both alive and decides winner at commit

Tid3

(older)

(newer)
Aborted

- Timeout to avoid deadlock by incorrect client code which
prevents the completion of the oldest transaction.

20Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

2. Truth Table of Conflicts Management

21

operation mode Tid 1 Tid 2 winner
mode1
mode2
both modes
both modes
both modes

read read both
read read Tid 1
read write Tid 1
write read Tid 1
write write Tid 1

Tid 1 (Older) < Tid 2 (Younger)

- Older transaction id wins at data access
- Provides only shared reads: can detect Read/Read conflict
with dummy write: Rd (Obj1) with Wr(Dummy1)

 Not Supported

21Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Tid, TMid

22

- TMid (TM identifier) is given by coordinator at TM startup
- Tid (Transaction identifier)

• Define Tid = [TMid, TM-localtime] at a transaction
generation // note: [a, b] = concatenation of ‘a’ and ‘b’
• Compare TMid only when local time is the same
• Preciseness is not required, because Tid is just a priority
to decide a winner transaction at object access time.

r0.64 Mod

Coordinator
TM: Transaction Monitor

Application

TSR

Assume library
based TM

1. start
TM

2. promote
to TMsever

3. TMid

Master i Master j

i. StartTx

Tid p

iii. Rd/Wr
(p,obj)

ii. Tid p v. commit p

iv. Rd/Wr (p,obj)

vi.
 save
commit state of
Tid pliveness

check

22Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Conflict management at object access

23

Tid 2

3

time

S

S

Else
 Abort transaction with newer Tid

U

Notation)
S: Started
A: Aborted
U: Uncommitted
 (Speculatively running)

object A:
Read by Tid2

wr A

rd A

- Compares Tid in Master. Abort newer Tid immediately.
 (Traditional technique in DBMS)
- Timeout to avoid deadlock by
incorrect code or client crash,
which freezes the oldest transaction.

If time_difference(Tid3, Tid2) > Tout
Then
 Leaves both alive and decides
 winer at commit time.

Tid

(older)

(newer)
abort

23Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Issues - False abort/Status piggyback

24

Tid

2

3 (newest)

time

S

S

U

object A

wr A

rd A

• False Abort: the conflict which aborted Tid3 disappears
when Tid2 is aborted later.

• Chain reaction of false abort may occur
• Leave it because provability of false abort is small.

• Abort notified as status return (piggyback).
• Tid2 is not aborted by Tid1-write, but by some request
in the future (Needs callback to optimize)

State: Read by Tid2

1 (oldest) S

object B
State: Read by Tid2

rd B

wrB
Reason of conflict disappears

abort

abort
Tid

Tid

24Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

3. Commit - Two phase commit
• TM coordinates commit operation
• Save durable state in TSR

• Committing: unlock object by abort (optimization)
• NRP: no-return-point for durable transition to commit

TM
(commit
 coordinator)

time

Masters
(commit slaves)

Can commit?

Check then
 Lock

If all yes

TSR
(Transaction state repository)

Commit and
 Unlock

Delete

Committing NRP

Phase1 Phase 2

Behavior at
Tx related nodes crash

Abort Commit

gray
zone

TM Waits and Retries (Blocking) 25

no info. no info.

r0.64 Mod

25Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

3. Commit - Racing conditions
• Racing condition: Note that abort and commit are unilateral

• After NRP is written, TM start aborting in Phase2 due to (1) ‘OK’ loss or (2)
relevant node crash
• Then TM crashes. The recovered TM reads NRP then starts commit.
• (1) cannot be distinguished from (4) lost NRP req

• Solution
• NRP is idempotent: TM retries (4) and waits (1)
• If TM failed retry, TM reads TSR after enough timeout to decide behavior.
• After initiating (4), TM waits any relevant node recovery (blocking).

TM

time

Masters

TSR

Commit

NRP

Phase 2

gray zone

26

NRP write

OK

Crash &
 Recover

Abort

Read

(4)
(1)

(3)

(2): Some master
crash

Conflict

Phase 1

r0.63 Mod

26Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

3. Commit - State Machine with Failure

TM (coordinating)

Ref: A Formal Model of Crash Recovery in a Distributed System, Dale Skeen
and Michael Stonebraker, 1983

27

Masters
q1 q2

w1

abort1

abort2

commit1

p2

commit2

n1

Can commit?
 no

legend)
received msg

reply

Can commit?
 yes

abort
ack

commit
ack

Com. Request
Can commit?

no
-

yes
abort

all yes
NRP write

chk
NRP NRP ack

commit

timeout
NRP write

(some retry)

NRP
commit

retry fail
-

no NRP
abort

TM
recovery

r0.64 Mod

timeout

Can restore to
previous state
by Log replay.

chk NRP

no ack
commit

no ack
abort

Yellow is non-blocking, Orange is blocking.

* : client handles
 retry error

**

*

27Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

4. Crash Recovery - Clean up

28

• TM crash
• Completes commit/abort transactions for the TM

• Commits transactions whose NRPs are found in TSR
• Otherwise aborts transactions which belong to the
TMid
• Fast cleanup required to prevent other clients’
blockage by accessing locked objects

• Server crash
• Reconstruct hash and object status in memory from log

• TSR crash
• Recover commit status of transactions

r0.64 Mod

28Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

5. Implementation Alternatives

29

• TM - item 1 seems simplest and good for performance.
1. In client library such as crt0.

• Pros) Application (Tire2, Tire3) needs to be recovered to continue
web service anyway
• Cons) Need client recovery mechanism by coordinator

2. In a master
• Need TM locator
• Cons) Extra access latency and network traffic by additional hop for
data access

3. In a separate process/thread in a client node
• Need recovery mechanism
• Cons) Extra latency by process communication and dispatch

• TSR
• In a master with defining a table and save transaction
state as a normal object.

r0.64 Mod

29Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

5. Implementation Proposal

30

• Implement TM in client library
• Coordinator detects client failure and restarts
• Naming issue: ‘Once the liveness check/recovery is
managed by coordinator, it should be called ‘server’ -
not a client anymore’.

• TMid given by coordinator
• TM generates Tid = [TMid, TM’s local time]

• TSR as a specific table
• List of status: (Key, Value) =
 (TMid, list_of{ (Tid, TransactionStatus) })

• Can find both a Tid and all the Tids with TMid.
• Simple enough since one commit operation is
underway for a TM normally.

[a, b] denotes concatenation

r0.64 Mod

30Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

5. Implement TM in Client Library

31

• Crt0 contacts coordinator to get TMid and register
application info. for recovery.
• User can modify transaction algorithm by modifying library.

App.
time

Lib.
(TM)

Coord.

Crt0

TMid =
TMalloc

TSR

Master.

exit
Tid0 =
startTx

rd/wr
Tx

free(TMid)

crash

crash
detection

restart (may be on
 different node)

Recover
TM

Clean Up

App (server) X
App (server) X

Promote
to server

r0.63 Mod

31Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

5. TM Data Structure

Active Tid List

Tid=[M, T] Status 2 4 7
Master ID List

• All data in memory which consist:
• Status: Speculative/Committing/NRP/Aborting
• Master IDs: masters accessed by each transaction
• After TM crash, states for Tids recovered from TSR:

• State: NRP/Else
• Finalize Commit if NRP / Abort otherwise
 by broadcasting a request for a TMid to all masters
 // TM crash probability is small and request size
 // is small. (no optimization so far)

r0.64 Add

32Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

5. TM Control

Status for each Tid: Speculative/Committing/NRP/Aborting

To Be Done.

33Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Master Data Structure

34

• Volatile data forgot by crash: hash, array -- any improvement using log structure?
 memory management?

Log

Key hash

2

1

12

1,
blob10

2,
blob20

s-2-107,
r

s-2-104,
w-blob21

spec-w

T1 = [1, 60 ms]

T2 = [1, 85 ms]

T5 = [3, 85 ms]

Tid Hash

s-2-106,
w-blob21

spec-rcommitted committed spec-w

r0.64 Add

Simple example

To Be Done.

34Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

Master Control

35

To Be Done.

35Thursday, October 24, 13

S. Matsushita, 10/24/2013, rev. 0.64

TSR Data Structure

36

Table

• TSR as a specific table:
 (Key, Value) = (TMid, list_of{ (Tid, TransactionStatus) })

• Distribute access by a hash of the Key
• Durable and available

tablet 0 tablet 1 tablet n

Network

Master 0 Master 1 Master n

TM 0 TM i TM j

r0.64 Add

36Thursday, October 24, 13

