

Latency Patterns in Infiniband

Alex Mordkovich

Agenda

Motivation

RAMCloud ping-pong

Simple ping-pong client/server

Detour: Infiniband architecture

Effect of Infiniband parameters

Impact on RAMCloud

Motivation

While profiling RAMCloud's RPC performance,
observed alternating WRITE latencies in
ClusterPerf test.

Stripped away RPC layer in RAMCloud and other
variables to arrive at bare-bones transport-level
"ping-pong".

RAMCloud ping-pong

1 client, 1 master, 0 backups, log cleaner disabled

Intercept client/master communication at Infiniband transport
layer.

Bypassing RPC layer, ping-pong 10,000 128-byte messages
between client and master.

Ping-pong'ing is single-threaded (no workers; everything done
in polling thread).

RAMCloud ping-pong: Client

Default configuration

RAMCloud ping-pong: Client

Notable features:

Base latency just under 3.0us

Every other round-trip is 4.4us

There is a 32-round-trip cycle

Samples #30 and #32 are just under 5.0us

Noticeable degree of random noise

RAMCloud ping-pong: Master

Default configuration

RAMCloud ping-pong: Master

Notable features:

Base latency about 3.9us

No obvious alternation

There is a 32-round-trip cycle

Samples #31 and #32 are 4.5us

Noticeable degree of random noise

Results on RAMCloud:
Reconciling perspectives

RAMCloud ping-pong: Client
New configuration

RAMCloud ping-pong: Master
New configuration

Simple ping-pong client/server

Simple client (single-threaded):

 Send 128-byte message to server

 Wait for a response from server

 Repeat 10,000 times

Simple server (single-threaded):

 Wait for message from client

 Send 128-byte response to client

 Repeat

Infiniband Architecture

Each endpoint has a queue pair consisting of
 Send queue
 Receive queue

Each endpoint also has a completion queue for
notification of completed work requests.

Infiniband Architecture

To send a message, post a send work request on the
send queue.

To receive a message, post a receive work request on
the receive queue.

When a send or a receive request completes, a
notification is posted on the host's completion queue.

Sending and Receiving

[Diagram courtesy of http://www.hpcadvisorycouncil.com/events/switzerland_workshop/pdf/Presentations/Day%201/9_InfiniBand%20Arch.pdf]

http://www.hpcadvisorycouncil.com/events/switzerland_workshop/pdf/Presentations/Day%201/9_InfiniBand%20Arch.pdf

The Shared Receive Queue

Multiple queue pairs on a given host can share a
shared receive queue.

The SRQ is used instead of the receive queue in the
queue pair.

To send, each QP's own send queue is still used.

Simple ping-pong setup

Simple client and server set up queue pairs using the RDMA
Connection Manager library (librdmacm).

Client's and server's receive queues pre-populated
with some number of receive work requests (N).

When message is received, corresponding buffer is
returned to the tail of the receive queue.

Message reception cycles through N receive buffers.

Effect of Infiniband parameters

Settings tested in simple ping-pong:
 Receive queue depth (N)
 Using the SRQ versus the default receive queue in QP
 Granularity of receive buffer registration
 Maximum number of SGE in an SRQ request

Effect of receive queue depth

N = 1

Using receive queue in QP
 Two clear modes: 17us and 12.5us
 No obvious pattern between the two modes

Using SRQ
 Almost all round trips take 5.4us
 Some noise, but no obvious pattern

Effect of receive queue depth

N = 16

Using receive queue in QP
 Every 14th, 15th, and 16th round-trip is about 7.2us
 Remaining round-trips in the cycle are 3.15us.

Using SRQ
 Every 15th and 16th round-trip is 4.4us
 Remaining round-trips in the cycle are about 3.17us.

Effect of receive queue depth

N = 32

Using receive queue in QP
 Every 30th, 31st, and 32nd round-trip is about 7.4us
 Remaining round-trips in the cycle are 3.15us.

Using SRQ (RAMCloud configuration)
 Every 31st and 32nd round-trip is 4.4us
 Every 15th and 16th round-trip is 3.85us
 Remaining round-trips in the cycle are about 3.15us.

Effect of receive queue depth

N = 10,000 (receive queues fully pre-populated)

Using receive queue in QP

 Every 31st and 32nd round-trip is 3.8us
 Every 127th and 128 thround-trip is 4.5us
 Every 255th and 256th round-trip is 5.5us.
 Remaining round-trips in the cycle are about 3.15us.

Using SRQ

 Every 15th and 16th round-trip is 3.8us.
 Every 127th and 128th round-trip is 4.5us.
 Remaining round-trips in the cycle are about 3.15us

Receive (and transmit) buffers must be registered with HCA.

If we want N receive buffers of fixed size, we can:

 Register 1 contiguous chunk of memory and split it into N
individual buffers.

 Register 2 contiguous chunks of memory and split each into N/2
individual buffers.

 …
 Register M contiguous chunks of memory and split each into

N/M individual buffers.

Previous results use M=1 (as does RAMCloud).

Granularity of buffer registration

Granularity of buffer registration

N = 10,000, Using SRQ

Maximum SGE in an SRQ request

A receive work request can specify multiple
scatter/gather entries.

When an SRQ is created, the maximum number of
SGE entries per (future) request is specified.

Both RAMCloud and simple program only actually
use one SGE per receive request.

Previous results use value max_sge = 1

Maximum SGE in an SRQ request

N = 32, M = 1, using SRQ max_sge = 1

Maximum SGE in an SRQ request

N = 32, M = 1, using SRQ max_sge = 2 thru 3

Maximum SGE in an SRQ request

N = 32, M = 1, using SRQ max_sge = 4 thru 7

Maximum SGE in an SRQ request

N = 32, M = 1, using SRQ max_sge = 8 thru 15

Maximum SGE in an SRQ request

N = 32, M = 1, using SRQ max_sge = 16

Maximum SGE in an SRQ request

N = 32, M = 1, using SRQ

Individually or in bulk
 Return the receive buffer to SRQ as soon as a

message is received, or
 Return all N receive buffers to SRQ when the

queue is empty.

Returning in bulk has adverse effect on Nth round-
trip.

Returning individually is cheap and has minimal
impact on latency.

Returning receive buffers to SRQ

Returning receive buffers to SRQ

Before or after sending the response
 Return receive buffer to SRQ, then send

response.
 Send the response, then return the receive

buffer to SRQ.

Returning receive buffer after sending response
slightly improves latency, but increases variance.

Timing

Tested whether latency patterns are time-dependent

Spin client CPU for about 20us between receiving a
response and sending the next message.

No effect on round-trip latency patterns.

More quirks

While running test on RAMCloud, accidentally
forgot to return a receive buffer to the SRQ.

RAMCloud ping-pong test thus had 31, rather
than 32, receive buffers to work with.

Surprising results...

More quirks

More quirks

Impact on RAMCloud

 max_sge = 8 max_sge = 1
 =========== ===========

basic.read100 5.6 us 5.0 us
basic.readBw100 16.9 MB/s 19.1 MB/s
basic.read1K 7.2 us 6.7 us
basic.readBw1K 132.2 MB/s 142.9 MB/s
basic.read10K 10.4 us 9.9 us
basic.readBw10K 918.0 MB/s 963.4 MB/s
basic.read100K 46.5 us 46.1 us
basic.readBw100K 2.0 GB/s 2.0 GB/s
basic.read1M 430.2 us 430.2 us
basic.readBw1M 2.2 GB/s 2.2 GB/s
basic.write100 6.5 us 5.8 us
basic.writeBw100 14.7 MB/s 16.4 MB/s
basic.write1K 8.6 us 7.9 us
basic.writeBw1K 111.5 MB/s 120.2 MB/s
basic.write10K 15.1 us 14.6 us
basic.writeBw10K 630.0 MB/s 654.7 MB/s
basic.write100K 98.2 us 97.5 us
basic.writeBw100K 970.8 MB/s 978.2 MB/s
basic.write1M 987.8 us 981.9 us
basic.writeBw1M 965.5 MB/s 971.2 MB/s

ClusterPerf basic test (0 replicas)*

* For more accurate results, modified ClusterPerf to run 1000 iterations of each test rather than run each test
for a fixed amount of time.

Impact on RAMCloud

 max_sge = 8 max_sge = 1
 =========== ===========

basic.read100 5.5 us 4.9 us
basic.readBw100 17.4 MB/s 19.4 MB/s
basic.read1K 7.1 us 6.6 us
basic.readBw1K 133.5 MB/s 145.3 MB/s
basic.read10K 10.4 us 9.9 us
basic.readBw10K 920.3 MB/s 967.8 MB/s
basic.read100K 46.7 us 46.2 us
basic.readBw100K 2.0 GB/s 2.0 GB/s
basic.read1M 429.8 us 439.8 us
basic.readBw1M 2.2 GB/s 2.1 GB/s
basic.write100 14.9 us 14.0 us
basic.writeBw100 6.4 MB/s 6.8 MB/s
basic.write1K 18.9 us 17.9 us
basic.writeBw1K 50.6 MB/s 53.3 MB/s
basic.write10K 37.4 us 36.9 us
basic.writeBw10K 254.8 MB/s 258.3 MB/s
basic.write100K 244.2 us 244.2 us
basic.writeBw100K 390.6 MB/s 390.5 MB/s
basic.write1M 2.4 ms 2.3 ms
basic.writeBw1M 404.9 MB/s 409.7 MB/s

ClusterPerf basic test (3 replicas)*

* For more accurate results, modified ClusterPerf to run 1000 iterations of each test rather than run each test
for a fixed amount of time.

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

